Stan: A C++ Library for Probability and Sampling. Stan is a probabilistic programming language implementing full Bayesian statistical inference with MCMC sampling (NUTS, HMC) and penalized maximum likelihood estimation with Optimization (BFGS). Stan is coded in C++ and runs on all major platforms.

References in zbMATH (referenced in 189 articles , 1 standard article )

Showing results 1 to 20 of 189.
Sorted by year (citations)

1 2 3 ... 8 9 10 next

  1. David Issa Mattos, Érika Martins Silva Ramos: Bayesian Paired-Comparison with the bpcs Package (2021) arXiv
  2. James Yang: FastAD: Expression Template-Based C++ Library for Fast and Memory-Efficient Automatic Differentiation (2021) arXiv
  3. John Taylor Chavis, Amy Louise Cochran, Christopher James Earls: CU-MSDSp: A flexible parallelized Reversible jump Markov chain Monte Carlo method (2021) not zbMATH
  4. Lukas Prediger, Niki Loppi, Samuel Kaski, Antti Honkela: d3p - A Python Package for Differentially-Private Probabilistic Programming (2021) arXiv
  5. Nemeth, Christopher; Fearnhead, Paul: Stochastic gradient Markov chain Monte Carlo (2021)
  6. Raim, Andrew M.; Holan, Scott H.; Bradley, Jonathan R.; Wikle, Christopher K.: Spatio-temporal change of support modeling with \textttR (2021)
  7. Andrade, Daniel; Takeda, Akiko; Fukumizu, Kenji: Robust Bayesian model selection for variable clustering with the Gaussian graphical model (2020)
  8. Angus McLure, Ben O’Neill, Helen Mayfield, Colleen Lau, Brady McPherson: PoolTestR: An R package for estimating prevalence and regression modelling with pooled samples (2020) arXiv
  9. Anne Philippe, Marie-Anne Vibet: Analysis of Archaeological Phases Using the R Package ArchaeoPhases (2020) not zbMATH
  10. Brehmer, Johann; Louppe, Gilles; Pavez, Juan; Cranmer, Kyle: Mining gold from implicit models to improve likelihood-free inference (2020)
  11. Calafat, Francisco M.; Marcos, Marta: Probabilistic reanalysis of storm surge extremes in Europe (2020)
  12. Chenguang Wang, Elizabeth Colantuoni, Andrew Leroux, Daniel O. Scharfstein: idem: An R Package for Inferences in Clinical Trials with Death and Missingness (2020) not zbMATH
  13. Cho, Sun-Joo; Brown-Schmidt, Sarah; De Boeck, Paul; Shen, Jianhong: Modeling intensive polytomous time-series eye-tracking data: a dynamic tree-based item response model (2020)
  14. Fisher, Christopher R.; Houpt, Joseph W.; Gunzelmann, Glenn: Developing memory-based models of ACT-R within a statistical framework (2020)
  15. Fouskakis, D.; Petrakos, G.; Rotous, I.: A Bayesian longitudinal model for quantifying students’ preferences regarding teaching quality indicators (2020)
  16. Gin, Brian; Sim, Nicholas; Skrondal, Anders; Rabe-Hesketh, Sophia: A dyadic IRT model (2020)
  17. Izhar Asael Alonzo Matamoros, Cristian Andres Cruz Torres: varstan: An R package for Bayesian analysis of structured time series models with Stan (2020) arXiv
  18. Jacob Leander, Joachim Almquist, Anna Johnning, Julia Larsson, Mats Jirstrand: NLMEModeling: A Wolfram Mathematica Package for Nonlinear Mixed Effects Modeling of Dynamical Systems (2020) arXiv
  19. Jauch, Michael; Hoff, Peter D.; Dunson, David B.: Random orthogonal matrices and the Cayley transform (2020)
  20. Jeffrey Pullin, Lyle Gurrin, Damjan Vukcevic: Rater: An R Package for Fitting Statistical Models of Repeated Categorical Ratings (2020) arXiv

1 2 3 ... 8 9 10 next