NIRVANA is a C code for astrophysical fluid flow modeling. It numerically integrates the 2D/3D equations of time-dependent, non-relativistic, compressible magnetohydrodynamics on Cartesian/cylindrical/spherical grids. NIRVANA provides adaptive mesh refinement techniques to handle multi-scale problems and implements a Poisson solver to treat self-gravitational flows.

References in zbMATH (referenced in 30 articles , 1 standard article )

Showing results 1 to 20 of 30.
Sorted by year (citations)

1 2 next

  1. Chernykh, Igor; Kulikov, Igor; Tutukov, Alexander: Hydrogen-helium chemical and nuclear galaxy collision: hydrodynamic simulations on AVX-512 supercomputers (2021)
  2. Keppens, Rony; Teunissen, Jannis; Xia, Chun; Porth, Oliver: \textttMPI-AMRVAC: a parallel, grid-adaptive PDE toolkit (2021)
  3. A. Brandenburg, A. Johansen, P. A. Bourdin, W. Dobler, W. Lyra, M. Rheinhardt, S. Bingert, N. E. L. Haugen, A. Mee, F. Gent, N. Babkovskaia, C.-C. Yang, T. Heinemann, B. Dintrans, D. Mitra, S. Candelaresi, J. Warnecke, P. J. Käpylä, A. Schreiber, P. Chatterjee, M. J. Käpylä, X.-Y. Li, J. Krüger, J. R. Aarnes, G. R. Sarson, J. S. Oishi, J. Schober, R. Plasson, C. Sandin, E. Karchniwy, L. F. S. Rodrigues, A. Hubbard, G. Guerrero, A. Snodin, I. R. Losada, J. Pekkilä, C. Qian (The Pencil Code Collaboration): The Pencil Code, a modular MPI code for partial differential equations and particles: multipurpose and multiuser-maintained (2020) arXiv
  4. Schmidmayer, Kevin; Petitpas, Fabien; Daniel, Eric: Adaptive mesh refinement algorithm based on dual trees for cells and faces for multiphase compressible flows (2019)
  5. Dumbser, Michael; Fambri, Francesco; Tavelli, Maurizio; Bader, Michael; Weinzierl, Tobias: Efficient implementation of ADER discontinuous Galerkin schemes for a scalable hyperbolic PDE engine (2018)
  6. Kulikov, I. M.; Chernykh, I. G.; Glinskiy, B. M.; Protasov, V. A.: An efficient optimization of Hll method for the second generation of Intel Xeon Phi processor (2018)
  7. Kulikov, I. M.; Chernykh, I. G.; Tutukov, A. V.: A new parallel Intel Xeon Phi hydrodynamics code for massively parallel supercomputers (2018)
  8. Rybakin, Boris; Goryachev, Valery: Modeling of density stratification and filamentous structure formation in molecular clouds after shock wave collision (2018)
  9. Fakhari, Abbas; Geier, Martin; Lee, Taehun: A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows (2016)
  10. Hatori, Tomoharu; Ito, Atsushi M.; Nunami, Masanori; Usui, Hideyuki; Miura, Hideaki: Level-by-level artificial viscosity and visualization for MHD simulation with adaptive mesh refinement (2016)
  11. Ji, Hua; Lien, Fue-Sang; Zhang, Fan: A GPU-accelerated adaptive mesh refinement for immersed boundary methods (2015)
  12. Mongwane, Bishop: Toward a consistent framework for high order mesh refinement schemes in numerical relativity (2015)
  13. Zabelok, Sergey; Arslanbekov, Robert; Kolobov, Vladimir: Adaptive kinetic-fluid solvers for heterogeneous computing architectures (2015)
  14. Dumbser, Michael; Hidalgo, Arturo; Zanotti, Olindo: High order space-time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems (2014)
  15. Kunz, Matthew W.; Stone, James M.; Bai, Xue-Ning: \textitPegasus: a new hybrid-kinetic particle-in-cell code for astrophysical plasma dynamics (2014)
  16. Dumbser, Michael; Zanotti, Olindo; Hidalgo, Arturo; Balsara, Dinshaw S.: ADER-WENO finite volume schemes with space-time adaptive mesh refinement (2013)
  17. Freytag, B.; Steffen, M.; Ludwig, H.-G.; Wedemeyer-Böhm, S.; Schaffenberger, W.; Steiner, O.: Simulations of stellar convection with CO5BOLD (2012)
  18. Ziegler, Udo: Block-structured adaptive mesh refinement on curvilinear-orthogonal grids (2012)
  19. Bitsch, B.; Kley, W.: Evolution of inclined planets in three-dimensional radiative discs (2011)
  20. Murawski, K.: Numerical solutions of magnetohydrodynamic equations (2011)

1 2 next