ALBERTA is an Adaptive multiLevel finite element toolbox using Bisectioning refinement and Error control by Residual Techniques for scientific Applications. ALBERTA, a sequential adaptive finite-element toolbox, is being used widely in the fields of scientific and engineering computation, especially in the numerical simulation of electromagnetics. But the nature of sequentiality has become the bottle-neck while solving large scale problems. So we develop a parallel adaptive finite-element package based on ALBERTA, using ParMETIS and PETSc. The package is able to deal with any problem that ALBERT solved. Furthermore, it is suitable for distributed memory parallel computers including PC clusters

References in zbMATH (referenced in 166 articles , 1 standard article )

Showing results 121 to 140 of 166.
Sorted by year (citations)

previous 1 2 3 ... 5 6 7 8 9 next

  1. Montenegro, R.; Cascón, J. M.; Escobar, J. M.; Rodríguez, Eduardo; Montero, G.: An automatic strategy for adaptive tetrahedral mesh generation (2009)
  2. Muntean, A.; Böhm, M.: Interface conditions for fast-reaction fronts in wet porous mineral materials: The case of concrete carbonation (2009)
  3. Narimanyan, Arsen: Unilateral conditions modelling the cut front during plasma cutting: FEM solution (2009)
  4. Nochetto, Ricardo H.; Siebert, Kunibert G.; Veeser, Andreas: Theory of adaptive finite element methods: An introduction (2009)
  5. Nochetto, Ricardo H.; Veeser, Andreas; Verani, Marco: A safeguarded dual weighted residual method (2009)
  6. Nürnberg, Robert: Numerical simulations of immiscible fluid clusters (2009)
  7. Takaishi, Takeshi; Kimura, Masato: Phase field model for mode III crack growth in two dimensional elasticity (2009)
  8. Zhang, Jian; Du, Qiang: Numerical studies of discrete approximations to the Allen-Cahn equation in the sharp interface limit (2009)
  9. Zhang, Linbo: A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection (2009)
  10. Barrett, John W.; Garcke, Harald; Nürnberg, Robert: Parametric approximation of willmore flow and related geometric evolution equations (2008)
  11. Barrett, John W.; Garcke, Harald; Nürnberg, Robert: A variational formulation of anisotropic geometric evolution equations in higher dimensions (2008)
  12. Barrett, John W.; Garcke, Harald; Nürnberg, Robert: On the parametric finite element approximation of evolving hypersurfaces in (\mathbbR^3) (2008)
  13. Bastian, P.; Blatt, M.; Dedner, A.; Engwer, C.; Klöfkorn, R.; Kornhuber, R.; Ohlberger, M.; Sander, O.: A generic grid interface for parallel and adaptive scientific computing. II: Implementation and tests in DUNE (2008)
  14. Burman, E.; Linke, A.: Stabilized finite element schemes for incompressible flow using Scott-Vogelius elements (2008)
  15. Cascon, J. Manuel; Kreuzer, Christian; Nochetto, Ricardo H.; Siebert, Kunibert G.: Quasi-optimal convergence rate for an adaptive finite element method (2008)
  16. Cascón, J. M.; Montenegro, R.; Escobar, J. M.; Rodríguez, E.; Montero, G.: A new meccano technique for adaptive 3-D triangulations (2008)
  17. Doğan, Günay; Morin, Pedro; Nochetto, Ricardo H.: A variational shape optimization approach for image segmentation with a Mumford-Shah functional (2008)
  18. Du, Qiang; Zhang, Jian: Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations (2008)
  19. Dziuk, G.; Elliott, C. M.: Eulerian finite element method for parabolic PDEs on implicit surfaces (2008)
  20. Eilks, C.; Elliott, C. M.: Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method (2008)

previous 1 2 3 ... 5 6 7 8 9 next