References in zbMATH (referenced in 156 articles )

Showing results 1 to 20 of 156.
Sorted by year (citations)

1 2 3 ... 6 7 8 next

  1. Benjamin G. Stokell, Rajen D. Shah, Ryan J. Tibshirani: Modelling High-Dimensional Categorical Data Using Nonconvex Fusion Penalties (2020) arXiv
  2. Boehmke, Brad; Greenwell, Brandon M.: Hands-on machine learning with R (2020)
  3. Calhoun, Peter; Hallett, Melodie J.; Su, Xiaogang; Cafri, Guy; Levine, Richard A.; Fan, Juanjuan: Random forest with acceptance-rejection trees (2020)
  4. Elman, Miriam R.; Minnier, Jessica; Chang, Xiaohui; Choi, Dongseok: Noise accumulation in high dimensional classification and total signal index (2020)
  5. Genuer, Robin; Poggi, Jean-Michel: Random forests with R (2020)
  6. Lopes, Miles E.: Estimating a sharp convergence bound for randomized ensembles (2020)
  7. Lu, Haihao; Mazumder, Rahul: Randomized gradient boosting machine (2020)
  8. Pan, Yuqing; Mai, Qing: Efficient computation for differential network analysis with applications to quadratic discriminant analysis (2020)
  9. Roustant, Olivier; Padonou, Espéran; Deville, Yves; Clément, Aloïs; Perrin, Guillaume; Giorla, Jean; Wynn, Henry: Group kernels for Gaussian process metamodels with categorical inputs (2020)
  10. Sage, Andrew J.; Genschel, Ulrike; Nettleton, Dan: Tree aggregation for random forest class probability estimation (2020)
  11. Ahonen, Ilmari; Nevalainen, Jaakko; Larocque, Denis: Prediction with a flexible finite mixture-of-regressions (2019)
  12. Azmi, Mohamed; Runger, George C.; Berrado, Abdelaziz: Interpretable regularized class association rules algorithm for classification in a categorical data space (2019)
  13. Badih, Ghattas; Pierre, Michel; Laurent, Boyer: Assessing variable importance in clustering: a new method based on unsupervised binary decision trees (2019)
  14. Casalicchio, Giuseppe; Bossek, Jakob; Lang, Michel; Kirchhoff, Dominik; Kerschke, Pascal; Hofner, Benjamin; Seibold, Heidi; Vanschoren, Joaquin; Bischl, Bernd: \textttOpenML: an \textttRpackage to connect to the machine learning platform openml (2019)
  15. Christoph Mssel, Ludwig Lausser, Markus Maucher, Hans A. Kestler: Multi-Objective Parameter Selection for Classifiers (2019) not zbMATH
  16. Cichosz, Paweł: A case study in text mining of discussion forum posts: classification with bag of words and global vectors (2019)
  17. Daniel Conn, Tuck Ngun, Gang Li, Christina M. Ramirez: Fuzzy Forests: Extending Random Forest Feature Selection for Correlated, High-Dimensional Data (2019) not zbMATH
  18. da Silva, Natalia; Alvarez-Castro, Ignacio: Clicks and cliques: exploring the soul of the community (2019)
  19. Dvořák, Jakub: Classification trees with soft splits optimized for ranking (2019)
  20. El Haouij, Neska; Poggi, Jean-Michel; Ghozi, Raja; Sevestre-Ghalila, Sylvie; Jaïdane, Mériem: Random forest-based approach for physiological functional variable selection for driver’s stress level classification (2019)

1 2 3 ... 6 7 8 next