AceFEM The Mathematica Finite Element Environment. The AceFEM package is a general finite element environment designed to solve multi-physics and multi-field problems. The package explores advantages of symbolic capabilities of Mathematica while maintaining numerical efficiency of commercial finite element environments. The element oriented approach enables easy creation of customized finite element based applications in Mathematica. It also includes examples and libraries needed for the automation of the Finite Element Method.

References in zbMATH (referenced in 46 articles )

Showing results 1 to 20 of 46.
Sorted by year (citations)

1 2 3 next

  1. Bode, T.; Weißenfels, C.; Wriggers, P.: Mixed peridynamic formulations for compressible and incompressible finite deformations (2020)
  2. Bode, T.; Weißenfels, C.; Wriggers, P.: Peridynamic Petrov-Galerkin method: a generalization of the peridynamic theory of correspondence materials (2020)
  3. da Costa e Silva, Cátia; Maassen, Sascha F.; Pimenta, Paulo M.; Schröder, Jörg: A simple finite element for the geometrically exact analysis of Bernoulli-Euler rods (2020)
  4. de Mattos Pimenta, Paulo; Maassen, Sascha; da Costa e Silva, Cátia; Schröder, Jörg: A fully nonlinear beam model of Bernoulli-Euler type (2020)
  5. Korelc, Jože; Melink, Teja: Sensitivity analysis based automation of computational problems (2020)
  6. Magliulo, Marco; Lengiewicz, Jakub; Zilian, Andreas; Beex, Lars A. A.: Non-localised contact between beams with circular and elliptical cross-sections (2020)
  7. Majewski, M.; Holobut, P.; Kursa, M.; Kowalczyk-Gajewska, K.: Packing and size effects in elastic-plastic particulate composites: micromechanical modelling and numerical verification (2020)
  8. Plagge, Jan; Ricker, A.; Kröger, N. H.; Wriggers, P.; Klüppel, M.: Efficient modeling of filled rubber assuming stress-induced microscopic restructurization (2020)
  9. Ren, Huilong; Zhuang, Xiaoying; Rabczuk, Timon: A higher order nonlocal operator method for solving partial differential equations (2020)
  10. van Huyssteen, Daniel; Reddy, B. D.: A virtual element method for isotropic hyperelasticity (2020)
  11. Aldakheel, Fadi; Hudobivnik, Blaž; Wriggers, Peter: Virtual elements for finite thermo-plasticity problems (2019)
  12. Hudobivnik, Blaž; Aldakheel, Fadi; Wriggers, Peter: A low order 3D virtual element formulation for finite elasto-plastic deformations (2019)
  13. Lavrenčič, Marko; Brank, Boštjan: Hybrid-mixed shell finite elements and implicit dynamic schemes for shell post-buckling (2019)
  14. Marino, Michele; Hudobivnik, Blaž; Wriggers, Peter: Computational homogenization of polycrystalline materials with the virtual element method (2019)
  15. Marino, Michele; Wriggers, Peter: Micro -- macro constitutive modeling and finite element analytical-based formulations for fibrous materials: a multiscale structural approach for crimped fibers (2019)
  16. Ren, Huilong; Zhuang, Xiaoying; Rabczuk, Timon; Zhu, HeHua: Dual-support smoothed particle hydrodynamics in solid: variational principle and implicit formulation (2019)
  17. Soleimani, Meisam: Finite strain visco-elastic growth driven by nutrient diffusion: theory, FEM implementation and an application to the biofilm growth (2019)
  18. Veldin, Tomo; Brank, Boštjan; Brojan, Miha: Computational finite element model for surface wrinkling of shells on soft substrates (2019)
  19. Aldakheel, Fadi; Hudobivnik, Blaž; Hussein, Ali; Wriggers, Peter: Phase-field modeling of brittle fracture using an efficient virtual element scheme (2018)
  20. Pond, D.; McBride, A. T.; Davids, L. M.; Reddy, B. D.; Limbert, G.: Microstructurally-based constitutive modelling of the skin -- linking intrinsic ageing to microstructural parameters (2018)

1 2 3 next