AceFEM The Mathematica Finite Element Environment. The AceFEM package is a general finite element environment designed to solve multi-physics and multi-field problems. The package explores advantages of symbolic capabilities of Mathematica while maintaining numerical efficiency of commercial finite element environments. The element oriented approach enables easy creation of customized finite element based applications in Mathematica. It also includes examples and libraries needed for the automation of the Finite Element Method.

References in zbMATH (referenced in 54 articles )

Showing results 1 to 20 of 54.
Sorted by year (citations)

1 2 3 next

  1. Bode, T.; Weißenfels, C.; Wriggers, P.: A consistent peridynamic formulation for arbitrary particle distributions (2021)
  2. Lavrenčič, Marko; Brank, Boštjan: Energy-decaying and momentum-conserving schemes for transient simulations with mixed finite elements (2021)
  3. Porenta, Luka; Lavrenčič, Marko; Dujc, Jaka; Brojan, Miha; Tušek, Jaka; Brank, Boštjan: Modeling large deformations of thin-walled SMA structures by shell finite elements (2021)
  4. Tůma, K.; Rezaee-Hajidehi, M.; Hron, J.; Farrell, P. E.; Stupkiewicz, S.: Phase-field modeling of multivariant martensitic transformation at finite-strain: computational aspects and large-scale finite-element simulations (2021)
  5. Wriggers, Peter; Hudobivnik, Blaž; Aldakheel, Fadi: NURBS-based geometries: a mapping approach for virtual serendipity elements (2021)
  6. Bode, T.; Weißenfels, C.; Wriggers, P.: Mixed peridynamic formulations for compressible and incompressible finite deformations (2020)
  7. Bode, T.; Weißenfels, C.; Wriggers, P.: Peridynamic Petrov-Galerkin method: a generalization of the peridynamic theory of correspondence materials (2020)
  8. da Costa e Silva, Cátia; Maassen, Sascha F.; Pimenta, Paulo M.; Schröder, Jörg: A simple finite element for the geometrically exact analysis of Bernoulli-Euler rods (2020)
  9. de Mattos Pimenta, Paulo; Maassen, Sascha; da Costa e Silva, Cátia; Schröder, Jörg: A fully nonlinear beam model of Bernoulli-Euler type (2020)
  10. Gay Neto, Alfredo; Wriggers, Peter: Master-master frictional contact and applications for beam-shell interaction (2020)
  11. Hussein, Ali; Hudobivnik, Blaž; Wriggers, Peter: A combined adaptive phase field and discrete cutting method for the prediction of crack paths (2020)
  12. Magliulo, Marco; Lengiewicz, Jakub; Zilian, Andreas; Beex, Lars A. A.: Non-localised contact between beams with circular and elliptical cross-sections (2020)
  13. Majewski, M.; Holobut, P.; Kursa, M.; Kowalczyk-Gajewska, K.: Packing and size effects in elastic-plastic particulate composites: micromechanical modelling and numerical verification (2020)
  14. Plagge, Jan; Ricker, A.; Kröger, N. H.; Wriggers, P.; Klüppel, M.: Efficient modeling of filled rubber assuming stress-induced microscopic restructurization (2020)
  15. Ren, Huilong; Zhuang, Xiaoying; Rabczuk, Timon: A higher order nonlocal operator method for solving partial differential equations (2020)
  16. van Huyssteen, Daniel; Reddy, B. D.: A virtual element method for isotropic hyperelasticity (2020)
  17. Wessels, Henning; Weißenfels, Christian; Wriggers, Peter: The neural particle method - an updated Lagrangian physics informed neural network for computational fluid dynamics (2020)
  18. Wriggers, P.; Hudobivnik, B.; Aldakheel, F.: A virtual element formulation for general element shapes (2020)
  19. Aldakheel, Fadi; Hudobivnik, Blaž; Wriggers, Peter: Virtual elements for finite thermo-plasticity problems (2019)
  20. Hudobivnik, Blaž; Aldakheel, Fadi; Wriggers, Peter: A low order 3D virtual element formulation for finite elasto-plastic deformations (2019)

1 2 3 next