FEAPpv A Finite Element Analysis Program: Personal Version. FEAPpv is a general purpose finite element analysis program which is designed for research and educational use (If you are looking for FEAP and not FEAPpv please see www.ce.berkeley.edu/feap). FEAPpv is described in the references: The Finite Element Method: Its Basis and Fundamentals,6th ed., by O.C. Zienkiewicz, R.L. Taylor and J.Z. Zhu, Elsevier, Oxford, 2005, (www.elsevier.com). The Finite Element Method for Solid and Structural Mechanics,6th ed., by O.C. Zienkiewicz and R.L. Taylor, Elsevier, Oxford, 2005, (www.elsevier.com).

References in zbMATH (referenced in 291 articles , 1 standard article )

Showing results 1 to 20 of 291.
Sorted by year (citations)

1 2 3 ... 13 14 15 next

  1. Pinto da Silva, Marcelo; Machado, Roberto Dalledone; Abdalla Filho, João Elias: The enriched modified local Green’s function method applied to elasto static problems (2019)
  2. Álvarez Hostos, Juan C.; Fachinotti, Victor D.; Sarache Piña, Alirio J.; Bencomo, Alfonso D.; Puchi Cabrera, Eli S.: Implementation of standard penalty procedures for the solution of incompressible Navier-Stokes equations, employing the element-free Galerkin method (2018)
  3. Barra, Valeria; Chester, Shawn A.; Afkhami, Shahriar: Numerical simulations of nearly incompressible viscoelastic membranes (2018)
  4. Beheshti, Alireza: A numerical analysis of Saint-Venant torsion in strain-gradient bars (2018)
  5. Beheshti, Alireza: Novel quadrilateral elements based on explicit Hermite polynomials for bending of Kirchhoff-Love plates (2018)
  6. Cheng, Jie; Zhang, Lucy T.: A general approach to derive stress and elasticity tensors for hyperelastic isotropic and anisotropic biomaterials (2018)
  7. Chen, Zhen-Peng; Zhang, Xiong; Sze, Kam Yim; Kan, Lei; Qiu, Xin-Ming: (v)-(p) material point method for weakly compressible problems (2018)
  8. Galanin, M. P.; Zhukov, V. T.; Klyushnev, N. V.; Kuzmina, K. S.; Lukin, V. V.; Marchevsky, I. K.; Rodin, A. S.: Implementation of an iterative algorithm for the coupled heat transfer in case of high-speed flow around a body (2018)
  9. Garipov, T. T.; Tomin, P.; Rin, R.; Voskov, D. V.; Tchelepi, H. A.: Unified thermo-compositional-mechanical framework for reservoir simulation (2018)
  10. Guo, Hailong; Yang, Xu: Gradient recovery for elliptic interface problem. III: Nitsche’s method (2018)
  11. Li, Eric; He, Z. C.; Liu, G. R.: Evaluation of the stiffness matrix in static and dynamic elasticity problems (2018)
  12. Marco, Onofre; Ródenas, Juan José; Fuenmayor, Francisco Javier; Tur, Manuel: An extension of shape sensitivity analysis to an immersed boundary method based on Cartesian grids (2018)
  13. Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.: A 2D Daubechies finite wavelet domain method for transient wave response analysis in shear deformable laminated composite plates (2018)
  14. Qing, Guanghui; Tian, Jia: Highly accurate symplectic element based on two variational principles (2018)
  15. Ran, Chunjiang; Yang, Haitian; Zhang, Guoqing: A gradient based algorithm to solve inverse plane bimodular problems of identification (2018)
  16. Rasthofer, Ursula; Gravemeier, Volker: Recent developments in variational multiscale methods for large-eddy simulation of turbulent flow (2018)
  17. Rukavishnikov, V. A.; Matveeva, E. V.; Rukavishnikova, E. I.: The properties of the weighted space (H_2,\alpha^k(\Omega)) and weighted set (W_2,\alpha^k(\Omega,\delta)) (2018)
  18. Ruparel, Tejas; Eskandarian, Azim; Lee, James D.: Concurrent multi-domain simulations in structural dynamics using multiple grid and multiple time-scale (MGMT) method (2018)
  19. Scalet, Giulia; Auricchio, Ferdinando: Computational methods for elastoplasticity: an overview of conventional and \textitless-conventional approaches (2018)
  20. Schurr, Dennis; Holzwarth, Philip; Eberhard, Peter: Investigation of dynamic stress recovery in elastic gear simulations using different reduction techniques (2018)

1 2 3 ... 13 14 15 next