Computing sparse Hessians with automatic differentiation. A new approach for computing a sparsity pattern for a Hessian is presented: nonlinearity information is propagated through the function evaluation yielding the nonzero structure. A complexity analysis of the proposed algorithm is given. Once the sparsity pattern is available, coloring algorithms can be applied to compute a seed matrix. To evaluate the product of the Hessian and the seed matrix, a vector version for evaluating second order adjoints is analysed. New drivers of ADOL-C are provided implementing the presented algorithms. Runtime analyses are given for some problems of the CUTE collection.

This software is also peer reviewed by journal TOMS.