gPdtest
Pdtest: Bootstrap goodness-of-fit test for the generalized Pareto distribution. This package computes the bootstrap goodness-of-fit test for the generalized Pareto distribution by Villasenor-Alva and Gonzalez-Estrada (2009). The null hypothesis includes heavy and non-heavy tailed gPd’s. A function for fitting the gPd to data using the parameter estimation methods proposed in the same article is also provided.
Keywords for this software
References in zbMATH (referenced in 10 articles , 1 standard article )
Showing results 1 to 10 of 10.
Sorted by year (- Eling, Martin; Schnell, Werner: Capital requirements for cyber risk and cyber risk insurance: an analysis of Solvency II, the U.S. Risk-Based Capital Standards, and the Swiss Solvency Test (2020)
- Chu, J.; Dickin, O.; Nadarajah, S.: A review of goodness of fit tests for Pareto distributions (2019)
- Chan, Debora; Rey, Andrea; Gambini, Juliana; Frery, Alejandro C.: Sampling from the (\mathcalG_I^0) distribution (2018)
- González-Estrada, E.; Villaseñor, J. A.: An R package for testing goodness of fit: goft (2018)
- Bessi, Alessandro: On the statistical properties of viral misinformation in online social media (2017)
- Eling, Martin; Loperfido, Nicola: Data breaches: goodness of fit, pricing, and risk measurement (2017)
- Cirillo, Pasquale; Taleb, Nassim Nicholas: On the statistical properties and tail risk of violent conflicts (2016)
- Meintanis, Simos G.; Gamero, Ma Dolores Jiménez; Alba-Fernández, V.: A class of goodness-of-fit tests based on transformation (2014)
- Nadarajah, Saralees; Afuecheta, Emmanuel; Chan, Stephen: A double generalized Pareto distribution (2013)
- Villaseñor-Alva, José A.; González-Estrada, Elizabeth: A bootstrap goodness of fit test for the generalized Pareto distribution (2009)