quadgk: Numerically evaluate integral, adaptive Gauss-Kronrod quadrature, q = quadgk(fun,a,b) attempts to approximate the integral of a scalar-valued function fun from a to b using high-order global adaptive quadrature and default error tolerances. The function y = fun(x) should accept a vector argument x and return a vector result y, where y is the integrand evaluated at each element of x. fun must be a function handle. Limits a and b can be -Inf or Inf. If both are finite, they can be complex. If at least one is complex, the integral is approximated over a straight line path from a to b in the complex plane.

References in zbMATH (referenced in 49 articles , 1 standard article )

Showing results 1 to 20 of 49.
Sorted by year (citations)

1 2 3 next

  1. De Lauretis, Maria; Haller, Elena; Di Murro, Francesca; Romano, Daniele; Antonini, Giulio; Ekman, Jonas; Kovačević-Badstübner, Ivana; Grossner, Ulrike: On the rectangular mesh and the decomposition of a Green’s-function-based quadruple integral into elementary integrals (2022)
  2. Yang, Yonglin; Ding, Shenghu; Wang, Wenshuai; Wang, Xu; Li, Xing: The numerical algorithms of infinite integrals involving products of Bessel functions of arbitrary order (2022)
  3. Araneda, Axel A.; Villena, Marcelo J.: Computing the CEV option pricing formula using the semiclassical approximation of path integral (2021)
  4. Brovont, Aaron D.; Pekarek, Steven D.: Integral evaluation for a closed-form 2-D potential formulation of the Galerkin BEM (2021)
  5. Cambareri, Pasquale; Di Rienzo, Luca: Complete analytic integrations for the 2D BEM representation of the Laplace equation with linear shape functions (2021)
  6. Goćwin, Maciej: On optimal adaptive quadratures for automatic integration (2021)
  7. Mackay, Ed: The Green function for diffraction and radiation of regular waves by two-dimensional structures (2021)
  8. Potts, Daniel; Tasche, Manfred: Continuous window functions for NFFT (2021)
  9. Trong, Dang Duc; Thanh, Nguyen Hoang; Minh, Nguyen Dang; Lan, Nguyen Nhu: Density estimation of a mixture distribution with unknown point-mass and normal error (2021)
  10. Višak, Tomica; Baleta, Jakov; Virag, Zdravko; Vujanović, Milan; Wang, Jin; Qi, Fengsheng: Multi objective optimization of aspirating smoke detector sampling pipeline (2021)
  11. Ilmavirta, Joonas; Koskela, Olli; Railo, Jesse: Torus computed tomography (2020)
  12. Jin, Junyang; Yuan, Ye; Gonçalves, Jorge: High precision variational Bayesian inference of sparse linear networks (2020)
  13. Kontosakos, Vasileios E.: Fast quadratic programming for mean-variance portfolio optimisation (2020)
  14. Lopushenko, I. V.; Sveshnikov, A. G.: Discrete sources method to solve nonlocal scattering problems in plasmonic applications (2020)
  15. Monteghetti, Florian; Matignon, Denis; Piot, Estelle: Time-local discretization of fractional and related diffusive operators using Gaussian quadrature with applications (2020)
  16. Sarazin, Gabriel; Derennes, Pierre; Morio, Jérôme: Estimation of high-order moment-independent importance measures for Shapley value analysis (2020)
  17. Song, Zhu; Xiang, Yanqiu; Lin, Cheng; Zhou, Feng: A two-stage analytical extension for porothermoelastic model under axisymmetric loadings (2020)
  18. Trong, Dang Duc; Hai, Dinh Nguyen Duy; Minh, Nguyen Dang: Reconstruction of a space-dependent source in the inexact order time-fractional diffusion equation (2020)
  19. Ahues, Mario; d’Almeida, Filomena D.; Fernandes, Rosário; Vasconcelos, Paulo B.: Singularity subtraction for nonlinear weakly singular integral equations of the second kind (2019)
  20. Li, Min; Huang, Chengming; Ming, Wanyuan: Barycentric rational collocation methods for Volterra integral equations with weakly singular kernels (2019)

1 2 3 next