SERBA

SERBA: a B.I.E. program with linear elements for 2-D elastostatics analysis SERBA is a FORTRAN77 program which applies the boundary element method to solve the elasticify equation in a 2D region, by Federico Paris and Jose Canas. The program uses linear continuous elements, and any kind of combination of boundary conditions in stresses and displacements can be considered.


References in zbMATH (referenced in 153 articles , 1 standard article )

Showing results 41 to 60 of 153.
Sorted by year (citations)
  1. Al-Jawary, M. A.; Wrobel, L. C.: Numerical solution of two-dimensional mixed problems with variable coefficients by the boundary-domain integral and integro-differential equation methods (2011)
  2. Asadollahi, Pooyan; Tonon, Fulvio: Coupling of BEM with a large displacement and rotation algorithm (2011)
  3. Au, Chi Yan; Fung, Eric S.; Ling, Leevan: Numerical methods for backward Markov chain driven Black-Scholes option pricing (2011)
  4. Blázquez, A.; París, F.: Effect of numerical artificial corners appearing when using BEM on contact stresses (2011)
  5. Buroni, Federico C.; Ortiz, Jhonny E.; Sáez, Andrés: Multiple pole residue approach for 3D BEM analysis of mathematical degenerate and non-degenerate materials (2011)
  6. Chen, Wen; Lin, Ji; Wang, Fuzhang: Regularized meshless method for nonhomogeneous problems (2011)
  7. D’Elía, J.; Battaglia, L.; Cardona, A.; Storti, M.: Full numerical quadrature of weakly singular double surface integrals in Galerkin boundary element methods (2011)
  8. D’elía, Jorge; Battaglia, Laura; Storti, Mario: A semi-analytical computation of the Kelvin kernel for potential flows with a free surface (2011)
  9. Kim, M. K.; Yun, I.: An efficient implementation of the generalized minimum residual algorithm with a new preconditioner for the boundary element method (2011)
  10. Lin, Ji; Chen, Wen; Wang, Fuzhang: A new investigation into regularization techniques for the method of fundamental solutions (2011)
  11. Ma, H. M.; Gao, X.-L.: Strain gradient solution for a finite-domain Eshelby-type plane strain inclusion problem and Eshelby’s tensor for a cylindrical inclusion in a finite elastic matrix (2011)
  12. Marin, Liviu: Relaxation procedures for an iterative MFS algorithm for two-dimensional steady-state isotropic heat conduction Cauchy problems (2011)
  13. Ooi, E. T.; Yang, Z. J.: Modelling dynamic crack propagation using the scaled boundary finite element method (2011)
  14. Portela, A.: Dual boundary-element method: Simple error estimator and adaptivity (2011)
  15. Shigeta, Takemi; Young, D. L.: Regularized solutions with a singular point for the inverse biharmonic boundary value problem by the method of fundamental solutions (2011)
  16. Távara, L.; Mantič, V.; Graciani, E.; París, F.: BEM analysis of crack onset and propagation along fiber-matrix interface under transverse tension using a linear elastic-brittle interface model (2011)
  17. Vodička, R.; Mantič, V.; París, F.: Two variational formulations for elastic domain decomposition problems solved by SGBEM enforcing coupling conditions in a weak form (2011)
  18. Ang, Whye-Teong; Clements, David L.: Nonlinear heat equation for nonhomogeneous anisotropic materials: a dual-reciprocity boundary element solution (2010)
  19. da Silva Lopes, Patricia; Bretanha Jorge, Ariosto; Simões Cunha, Sebastião jun.: Detection of holes in a plate using global optimization and parameter identification techniques (2010)
  20. Gao, Xin-Lin; Ma, H. M.: Solution of Eshelby’s inclusion problem with a bounded domain and Eshelby’s tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory (2010)