Cephes C and C++ language special functions math library. Cephes Mathematical Library. Latest Linux distribution, dated 6/4/00. Special functions and other goodies in C, including long double precision routines for 68K, 386, and sparc processors. This is the most complete distribution package of the function library (but not the most up-to-date one). It includes these sections-- double: all functions in 64-bit double precision; single: all available functions in 32-bit single precision; long double: all available functions in 80-bit extended precision; 128bit: all available functions in 128-bit long double precision; qlib: all functions in q-type extended (44 to 106 decimal) precision, includes a C++ class for the binary floating point arithmetic and a q-type calculator program; c9x-complex: new C language standard C9X data type for complex variables, header complex.h for GNU C and functions in float complex, double complex, and long double complex precisions. (http://www.moshier.net/#Cephes)

References in zbMATH (referenced in 17 articles , 1 standard article )

Showing results 1 to 17 of 17.
Sorted by year (citations)

  1. Barnett, Alexander H.; Magland, Jeremy; af Klinteberg, Ludvig: A parallel nonuniform fast Fourier transform library based on an “exponential of semicircle” kernel (2019)
  2. Navas-Palencia, Guillermo: Fast and accurate algorithm for the generalized exponential integral (E_\nu(x)) for positive real order (2018)
  3. Pearson, John W.; Olver, Sheehan; Porter, Mason A.: Numerical methods for the computation of the confluent and Gauss hypergeometric functions (2017)
  4. Kang, Hongchao; An, Congpei: Differentiation formulas of some hypergeometric functions with respect to all parameters (2015)
  5. Petersen, Wesley P.; Vuillermot, Pierre A.: Product approximations for a class of quantum anharmonic oscillators (2014)
  6. Ballotta, Laura: Pricing and capital requirements for with profit contracts: modelling considerations (2009)
  7. Fukushima, Toshio: Fast computation of complete elliptic integrals and Jacobian elliptic functions (2009)
  8. Katharine Mullen; Ivo van Stokkum: TIMP: An R Package for Modeling Multi-way Spectroscopic Measurements (2007) not zbMATH
  9. L’Ecuyer, Pierre; Simard, Richard J.: Inverting the symmetrical beta distribution. (2006)
  10. Fujima, Shoichi; Ohmori, Katsushi: Benchmark problems for numerical schemes to passively transported interface (2004)
  11. Lether, Frank G.: Shifted rectangular quadrature rule approximations to Dawson’s integral (F(x)) (1998)
  12. Lether, Frank G.: Constrained near-minimax rational approximations to Dawson’s integral (1997)
  13. Lozier, Daniel W.: Software needs in special functions (1996)
  14. Anderson, G. D.; Barnard, R. W.; Richards, K. C.; Vamanamurthy, M. K.; Vuorinen, M.: Inequalities for zero-balanced hypergeometric functions (1995)
  15. Khajah, H. G.; Ortiz, E. L.: Ultra-high precision computations (1994)
  16. Brezinski, Claude; Redivo Zaglia, Michela: Construction of extrapolation processes (1991)
  17. Moshier, Stephen Lloyd Baluk: Methods and programs for mathematical functions (1989)