Orthogonal polynomials. Computation and approximation. Orthogonal polynomials are a widely used class of mathematical functions that are helpful in the solution of many important technical problems. This book provides, for the first time, a systematic development of computational techniques, including a suite of computer programs in Matlab downloadable from the Internet, to generate orthogonal polynomials of a great variety: OPQ: A MATLAB SUITE OF PROGRAMS FOR GENERATING ORTHOGONAL POLYNOMIALS AND RELATED QUADRATURE RULES.

References in zbMATH (referenced in 401 articles , 1 standard article )

Showing results 1 to 20 of 401.
Sorted by year (citations)

1 2 3 ... 19 20 21 next

  1. Alahmadi, J.; Pranić, M.; Reichel, L.: Computation of error bounds via generalized Gauss-Radau and Gauss-Lobatto rules (2021)
  2. Alhaidari, A. D.: Exponentially confining potential well (2021)
  3. An, Congpei; Wu, Hao-Ning: Tikhonov regularization for polynomial approximation problems in Gauss quadrature points (2021)
  4. Barry, Paul: Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials (2021)
  5. Beckermann, Bernhard; Putinar, Mihai; Saff, Edward B.; Stylianopoulos, Nikos: Perturbations of Christoffel-Darboux kernels: detection of outliers (2021)
  6. Bentbib, A. H.; El Ghomari, M.; Jbilou, K.; Reichel, L.: Shifted extended global Lanczos processes for trace estimation with application to network analysis (2021)
  7. Bespalov, Alex; Rocchi, Leonardo; Silvester, David: T-IFISS: a toolbox for adaptive FEM computation (2021)
  8. Brubeck, Pablo D.; Nakatsukasa, Yuji; Trefethen, Lloyd N.: Vandermonde with Arnoldi (2021)
  9. Díaz-González, Abel; Marcellán, Francisco; Pijeira-Cabrera, Héctor; Urbina, Wilfredo: Discrete-continuous Jacobi-Sobolev spaces and Fourier series (2021)
  10. Dong, Chaohua; Linton, Oliver; Peng, Bin: A weighted sieve estimator for nonparametric time series models with nonstationary variables (2021)
  11. Gautier, Guillaume; Bardenet, Rémi; Valko, Michal: Fast sampling from (\beta)-ensembles (2021)
  12. Jagels, Carl; Jbilou, Khalide; Reichel, Lothar: The extended global Lanczos method, Gauss-Radau quadrature, and matrix function approximation (2021)
  13. Kaarnioja, Vesa: Bounds on the spectrum of nonsingular triangular ((0,1))-matrices (2021)
  14. Karvonen, Toni; Oates, Chris J.; Girolami, Mark: Integration in reproducing kernel Hilbert spaces of Gaussian kernels (2021)
  15. Magnus, Alphonse P.; Ndayiragije, François; Ronveaux, André: About families of orthogonal polynomials satisfying Heun’s differential equation (2021)
  16. Ranjbar, H.; Ghoreishi, F.: A Gaussian quadrature rule for Fourier-type highly oscillatory integrals in the presence of stationary points (2021)
  17. Reichel, Lothar; Spalević, Miodrag M.: A new representation of generalized averaged Gauss quadrature rules (2021)
  18. Webb, Marcus; Olver, Sheehan: Spectra of Jacobi operators via connection coefficient matrices (2021)
  19. Bardenet, Rémi; Flamant, Julien; Chainais, Pierre: On the zeros of the spectrogram of white noise (2020)
  20. Bardenet, Rémi; Hardy, Adrien: Monte Carlo with determinantal point processes (2020)

1 2 3 ... 19 20 21 next