CUTEst

CUTEst: a constrained and unconstrained testing environment with safe threads. We describe the most recent evolution of our constrained and unconstrained testing environment and its accompanying SIF decoder. Code-named SIFDecode and CUTEst , these updated versions feature dynamic memory allocation, a modern thread-safe Fortran modular design, a new Matlab interface and a revised installation procedure integrated with GALAHAD.


References in zbMATH (referenced in 101 articles , 1 standard article )

Showing results 1 to 20 of 101.
Sorted by year (citations)

1 2 3 4 5 6 next

  1. Chen, X.; Toint, Ph. L.: High-order evaluation complexity for convexly-constrained optimization with non-Lipschitzian group sparsity terms (2021)
  2. Cristofari, Andrea; Rinaldi, Francesco: A derivative-free method for structured optimization problems (2021)
  3. Curtis, Frank E.; Robinson, Daniel P.; Royer, Clément W.; Wright, Stephen J.: Trust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimization (2021)
  4. Ding Ma, Dominique Orban, Michael A. Saunders: A Julia implementation of Algorithm NCL for constrained optimization (2021) arXiv
  5. Ahmadvand, M.; Esmaeilbeigi, M.; Yaghoobi, F.; Kamandi, A.: Performance evaluation of ORBIT algorithm to some effective parameters (2020)
  6. Al-Baali, Mehiddin; Caliciotti, Andrea; Fasano, Giovanni; Roma, Massimo: A class of approximate inverse preconditioners based on Krylov-subspace methods for large-scale nonconvex optimization (2020)
  7. Ben Hermans, Andreas Themelis, Panagiotis Patrinos: QPALM: A Proximal Augmented Lagrangian Method for Nonconvex Quadratic Programs (2020) arXiv
  8. Birgin, E. G.; Martínez, J. M.: Complexity and performance of an augmented Lagrangian algorithm (2020)
  9. Caliciotti, Andrea; Fasano, Giovanni; Potra, Florian; Roma, Massimo: Issues on the use of a modified bunch and Kaufman decomposition for large scale Newton’s equation (2020)
  10. Dehghani, R.; Bidabadi, N.: Two-step conjugate gradient method for unconstrained optimization (2020)
  11. De Leone, Renato; Fasano, Giovanni; Roma, Massimo; Sergeyev, Yaroslav D.: Iterative Grossone-based computation of negative curvature directions in large-scale optimization (2020)
  12. Estrin, Ron; Friedlander, Michael P.; Orban, Dominique; Saunders, Michael A.: Implementing a smooth exact penalty function for equality-constrained nonlinear optimization (2020)
  13. Gould, Nicholas I. M.; Simoncini, Valeria: Error estimates for iterative algorithms for minimizing regularized quadratic subproblems (2020)
  14. Gratton, S.; Royer, C. W.; Vicente, L. N.: A decoupled first/second-order steps technique for nonconvex nonlinear unconstrained optimization with improved complexity bounds (2020)
  15. Gratton, S.; Toint, Ph. L.: A note on solving nonlinear optimization problems in variable precision (2020)
  16. Huang, Yakui; Dai, Yu-Hong; Liu, Xin-Wei; Zhang, Hongchao: Gradient methods exploiting spectral properties (2020)
  17. Leyffer, Sven; Vanaret, Charlie: An augmented Lagrangian filter method (2020)
  18. Lotfi, Mina; Hosseini, S. Mohammad: An efficient Dai-Liao type conjugate gradient method by reformulating the CG parameter in the search direction equation (2020)
  19. Mestdagh, Guillaume; Goussard, Yves; Orban, Dominique: Scaled projected-directions methods with application to transmission tomography (2020)
  20. Orban, Dominique; Siqueira, Abel Soares: A regularization method for constrained nonlinear least squares (2020)

1 2 3 4 5 6 next