MACSYMA

Macsyma is a general purpose symbolic-numerical-graphical mathematics software product. Computer algebra system (CAS). You can use it to solve simple problems specified by one-line commands (such as finding the indefinite integral of a function), or to perform very complicated computations by means of a large Macsyma program. Macsyma offers: symbolic and numeric manipulation and solution capabilities in algebra, calculus and numerical analysis 2D and 3D report-quality graphics interactive scientific notebooks a user programming environment.


References in zbMATH (referenced in 720 articles , 6 standard articles )

Showing results 1 to 20 of 720.
Sorted by year (citations)

1 2 3 ... 34 35 36 next

  1. Liu, XiaoHua: The stability of exact solitary wave solutions for simplified modified Camassa-Holm equation (2022)
  2. Hu, Jingsen; Qi, Jianming: Further results about seeking for the exact solutions of the nonlinear ((2 + 1))-dimensional Jaulent-Miodek equation (2021)
  3. Cartmell, Matthew P.; Motazedi, Niloufar: Using symbolic computational dynamics as an aid to design (2020)
  4. Öchsner, Andreas; Makvandi, Resam: Numerical engineering optimization. Application of the computer algebra system Maxima (2020)
  5. Lu, Changna; Xie, Luoyan; Yang, Hongwei: Analysis of Lie symmetries with conservation laws and solutions for the generalized (3 + 1)-dimensional time fractional Camassa-Holm-Kadomtsev-Petviashvili equation (2019)
  6. Roanes-Lozano, Eugenio; Galán-García, Jose Luis; Solano-Macías, Carmen: Some reflections about the success and impact of the computer algebra system \textitDERIVEwith a 10-year time perspective (2019)
  7. Galán-García, José L.; Aguilera-Venegas, Gabriel; Galán-García, María Á.; Rodríguez-Cielos, Pedro; Atencia-Mc. Killop, Iván: Improving CAS capabilities: new rules for computing improper integrals (2018)
  8. Monagan, Michael; Tuncer, Baris: Sparse multivariate Hensel lifting: a high-performance design and implementation (2018)
  9. Benoit, Alexandre; Joldeş, Mioara; Mezzarobba, Marc: Rigorous uniform approximation of D-finite functions using Chebyshev expansions (2017)
  10. Gaeta, Giuseppe: Symmetry of stochastic non-variational differential equations (2017)
  11. Ábrahám, Erika; Abbott, John; Becker, Bernd; Bigatti, Anna M.; Brain, Martin; Buchberger, Bruno; Cimatti, Alessandro; Davenport, James H.; England, Matthew; Fontaine, Pascal; Forrest, Stephen; Griggio, Alberto; Kroening, Daniel; Seiler, Werner M.; Sturm, Thomas: \textsfSC(^2): satisfiability checking meets symbolic computation. (Project paper) (2016)
  12. Alsayyed, O.; Jaradat, H. M.; Jaradat, M. M. M.; Mustafa, Zead.; Shatat, Feras: Multi-soliton solutions of the BBM equation arisen in shallow water (2016)
  13. Hamidoǧlu, Ali: On general form of the tanh method and its application to nonlinear partial differential equations (2016)
  14. Csenki, Attila: A differential equation for a class of discrete lifetime distributions with an application in reliability (2015)
  15. El-Mikkawy, Moawwad; Atlan, Faiz: A new recursive algorithm for inverting general (k)-tridiagonal matrices (2015)
  16. Erdogan, Nuh; Henao, Humberto; Grisel, Richard: An improved methodology for dynamic modelling and simulation of electromechanically coupled drive systems: an experimental validation (2015)
  17. Fateman, Richard: Partitioning of algebraic subexpressions in computer algebra systems: an alternative to matching with an application to symbolic integration (2015)
  18. García, Alfonsa; García, Francisco; del Rey, Ángel Martín; Rodríguez, Gerardo; de la Villa, Agustín: Changing assessment methods: new rules, new roles (2014)
  19. Joubert, S. V.; Shatalov, M. Y.; Coetzee, C. E.: Using Fourier series to analyse mass imperfections in vibratory gyroscopes (2014)
  20. Lin, Xiao-Lin; Huo, Pei-Pei; Jia, Ji-Teng: A new recursive algorithm for inverting general periodic sevendiagonal and anti-sevendiagonal matrices (2014)

1 2 3 ... 34 35 36 next