Algorithm 778: L-BFGS-B Fortran subroutines for large-scale bound-constrained optimization. L-BFGS-B is a limited-memory algorithm for solving large nonlinear optimization problems subject to simple bounds on the variables. It is intended for problems in which information on the Hessian matrix is difficult to obtain, or for large dense problems. L-BFGS-B can also be used for unconstrained problems and in this case performs similarly to its predecessor, algorithm L-BFGS (Harwell routine VA15). The algorithm is implemened in Fortran 77.

References in zbMATH (referenced in 189 articles )

Showing results 1 to 20 of 189.
Sorted by year (citations)

1 2 3 ... 8 9 10 next

  1. Brust, Johannes J.; Di, Zichao (Wendy); Leyffer, Sven; Petra, Cosmin G.: Compact representations of structured BFGS matrices (2021)
  2. Dharmavaram, Sanjay: A gauge-fixing procedure for spherical fluid membranes and application to computations (2021)
  3. Ek, David; Forsgren, Anders: Approximate solution of system of equations arising in interior-point methods for bound-constrained optimization (2021)
  4. Gajardo, Diego; Mercado, Alberto; Muñoz, Juan Carlos: Identification of the anti-diffusion coefficient for the linear Kuramoto-Sivashinsky equation (2021)
  5. Girolami, Mark; Febrianto, Eky; Yin, Ge; Cirak, Fehmi: The statistical finite element method (statFEM) for coherent synthesis of observation data and model predictions (2021)
  6. Grosnit, Antoine; Cowen-Rivers, Alexander I.; Tutunov, Rasul; Griffiths, Ryan-Rhys; Wang, Jun; Bou-Ammar, Haitham: Are we forgetting about compositional optimisers in Bayesian optimisation? (2021)
  7. Hannukainen, Antti; Hyvönen, Nuutti; Perkkiö, Lauri: Inverse heat source problem and experimental design for determining iron loss distribution (2021)
  8. Horvath, Blanka; Muguruza, Aitor; Tomas, Mehdi: Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models (2021)
  9. Kollnig, Konrad; Bientinesi, Paolo; Di Napoli, Edoardo A.: Rational spectral filters with optimal convergence rate (2021)
  10. Ma, Chenxin; Jaggi, Martin; Curtis, Frank E.; Srebro, Nathan; Takáč, Martin: An accelerated communication-efficient primal-dual optimization framework for structured machine learning (2021)
  11. Muñoz Grajales, Juan Carlos: Non-homogeneous boundary value problems for some KdV-type equations on a finite interval: a numerical approach (2021)
  12. Oune, Nicholas; Bostanabad, Ramin: Latent map Gaussian processes for mixed variable metamodeling (2021)
  13. Rath, Katharina; Albert, Christopher G.; Bischl, Bernd; von Toussaint, Udo: Symplectic Gaussian process regression of maps in Hamiltonian systems (2021)
  14. Xu, Kailai; Darve, Eric: Solving inverse problems in stochastic models using deep neural networks and adversarial training (2021)
  15. Yuan, Zhenfei; Hu, Taizhong: pyvine: the Python package for regular vine copula modeling, sampling and testing (2021)
  16. Zhang, Meifan; Wang, Hongzhi: LAQP: learning-based approximate query processing (2021)
  17. Baghfalaki, Taban; Ganjali, Mojtaba: A transition model for analyzing multivariate longitudinal data using Gaussian copula approach (2020)
  18. de Zordo-Banliat, M.; Merle, X.; Dergham, G.; Cinnella, P.: Bayesian model-scenario averaged predictions of compressor cascade flows under uncertain turbulence models (2020)
  19. Dharmavaram, Sanjay; Perotti, Luigi E.: A Lagrangian formulation for interacting particles on a deformable medium (2020)
  20. Ferreiro-Ferreiro, A. M.; García-Rodríguez, J. A.; López-Salas, J. G.; Escalante, C.; Castro, M. J.: Global optimization for data assimilation in landslide tsunami models (2020)

1 2 3 ... 8 9 10 next