tsbridge: Calculate normalising constants for Bayesian time series models. The tsbridge package contains a collection of R functions that can be used to estimate normalising constants using the bridge sampler of Meng and Wong (1996). The functions can be applied to calculate posterior model probabilities for a variety of time series Bayesian models, where parameters are estimated using BUGS, and models themselves are created using the tsbugs package.

References in zbMATH (referenced in 166 articles )

Showing results 1 to 20 of 166.
Sorted by year (citations)

1 2 3 ... 7 8 9 next

  1. Hadj-Amar, Beniamino; Finkenstädt, Bärbel; Fiecas, Mark; Huckstepp, Robert: Identifying the recurrence of sleep apnea using a harmonic hidden Markov model (2021)
  2. Dinner, Aaron R.; Thiede, Erik H.; Koten, Brian Van; Weare, Jonathan: Stratification as a general variance reduction method for Markov chain Monte Carlo (2020)
  3. Mulder, Kees; Klugkist, Irene; van Renswoude, Daan; Visser, Ingmar: Mixtures of peaked power Batschelet distributions for circular data with application to saccade directions (2020)
  4. Reichl, Johannes: Estimating marginal likelihoods from the posterior draws through a geometric identity (2020)
  5. Wong, Jackie S. T.; Forster, Jonathan J.; Smith, Peter W. F.: Properties of the bridge sampler with a focus on splitting the MCMC sample (2020)
  6. Annis, Jeffrey; Evans, Nathan J.; Miller, Brent J.; Palmeri, Thomas J.: Thermodynamic integration and steppingstone sampling methods for estimating Bayes factors: a tutorial (2019)
  7. Chakraborty, Saptarshi; Khare, Kshitij: Consistent estimation of the spectrum of trace class data augmentation algorithms (2019)
  8. Frühwirth-Schnatter, Sylvia: Keeping the balance -- bridge sampling for marginal likelihood estimation in finite mixture, mixture of experts and Markov mixture models (2019)
  9. Gronau, Quentin F.; Wagenmakers, Eric-Jan; Heck, Daniel W.; Matzke, Dora: A simple method for comparing complex models: Bayesian model comparison for hierarchical multinomial processing tree models using Warp-III bridge sampling (2019)
  10. Liu, Yang; Hu, Guanyu; Cao, Lei; Wang, Xiaojing; Chen, Ming-Hui: Rejoinder: A comparison of Monte Carlo methods for computing marginal likelihoods of item response theory models (2019)
  11. Liu, Yang; Yang, Ji Seung; Maydeu-Olivares, Alberto: Restricted recalibration of item response theory models (2019)
  12. Roussel, Julien; Stoltz, Gabriel: A perturbative approach to control variates in molecular dynamics (2019)
  13. Veen, Duco; Klugkist, Irene: Standard errors, priors, and bridge sampling: a discussion of Liu et al. (2019)
  14. Zens, Gregor: Bayesian shrinkage in mixture-of-experts models: identifying robust determinants of class membership (2019)
  15. Alzahrani, Naif; Neal, Peter; Spencer, Simon E. F.; McKinley, Trevelyan J.; Touloupou, Panayiota: Model selection for time series of count data (2018)
  16. Koskinen, Johan; Wang, Peng; Robins, Garry; Pattison, Philippa: Outliers and influential observations in exponential random graph models (2018)
  17. Touloupou, Panayiota; Alzahrani, Naif; Neal, Peter; Spencer, Simon E. F.; McKinley, Trevelyan J.: Efficient model comparison techniques for models requiring large scale data augmentation (2018)
  18. Wong, Jackie S. T.; Forster, Jonathan J.; Smith, Peter W. F.: Bayesian mortality forecasting with overdispersion (2018)
  19. Everitt, Richard G.; Johansen, Adam M.; Rowing, Ellen; Evdemon-Hogan, Melina: Bayesian model comparison with un-normalised likelihoods (2017)
  20. Gronau, Quentin F.; Sarafoglou, Alexandra; Matzke, Dora; Ly, Alexander; Boehm, Udo; Marsman, Maarten; Leslie, David S.; Forster, Jonathan J.; Wagenmakers, Eric-Jan; Steingroever, Helen: A tutorial on bridge sampling (2017)

1 2 3 ... 7 8 9 next