Algorithm 679

Algorithm 679: A set of Level 3 Basic Linear Algebra Subprograms. This paper describes a model implementation and test software for the Level 2 Basic Linear Algebra Subprograms (Level 2 BLAS). Level 2 BLAS are targeted at matrix-vector operations with the aim of providing more efficient but portable, implementations of algorithms on high-performance computers. The model implementation provides a portable set of FORTRAN 77 Level 2 BLAS for machines where specialized implementations do not exists or are not required. The test software aims to verify that specialized implementations meet the specification of Level 2 BLAS that implementations are correctly installed.

This software is also peer reviewed by journal TOMS.


References in zbMATH (referenced in 65 articles )

Showing results 41 to 60 of 65.
Sorted by year (citations)
  1. Amestoy, Patrick R.; Duff, Iain S.; L’Excellent, Jean-Yves; Koster, Jacko: A fully asynchronous multifrontal solver using distributed dynamic scheduling (2001)
  2. Amestoy, P. R.; Duff, I. S.; L’Excellent, J.-Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers (2000)
  3. Barnes, David; Hopkins, Tim: The evolution and testing of a medium sized numerical package (2000)
  4. Volobuev, Yuri L.; Truhlar, Donald G.: An MIMD strategy for quantum mechanical reactive scattering calculations (2000)
  5. Volobuev, Yuri L.; Truhlar, Donald G.: Stabilization methods for quantum mechanical resonance states of four-body systems (2000)
  6. Dackland, Krister; Kågström, Bo: Blocked algorithms and software for reduction of a regular matrix pair to generalized Schur form (1999)
  7. Daydé, Michel; Duff, Iain S.: The RISC BLAS: A blocked implementation of level 3 BLAS for RISC processors (1999)
  8. Rump, Siegfried M.: Fast and parallel interval arithmetic (1999)
  9. Bik, Aart J. C.; Brinkhaus, Peter J. H.; Knijnenburg, Peter M. W.; Wijshoff, Harry A. G.: The automatic generation of sparse primitives (1998)
  10. Dongarra, J. J.; Hammarling, S.; Walker, D. W.: Key concepts for parallel out-of-core LU factorization (1998)
  11. Kågström, Bo; Ling, Per; Van Loan, Charles: Algorithm 784: GEMM-based level 3 BLAS: Portability and optimization issues (1998)
  12. Kågström, Bo; Ling, Per; Van Loan, Charles: GEMM-based level 3 BLAS: High-performance model implementations and performance evaluation benchmark (1998)
  13. Blackford, L. S.; Cleary, A.; Petitet, A.; Demmel, J.; Dhillon, I.; Ren, H.; Stanley, K.; Dongarra, J.; Hammarling, S.: Practical experience in the numerical dangers of heterogeneous computing (1997)
  14. Higham, Nicholas J.: Recent developments in dense numerical linear algebra (1997)
  15. Hopkins, T. R.: Is the quality of numerical subroutine code improving? (1997)
  16. Kågström, Bo; Poromaa, Peter: LAPACK-style algorithms and software for solving the generalized Sylvester equation and estimating the separation between regular matrix pairs (1996)
  17. Maghami, Peiman G.; Giesy, Daniel P.: Efficient computation of closed-loop frequency response for large-order flexible systems (1996)
  18. Joslin, Ronald D.; Hanebutte, Ulf R.; Zubair, Mohammad: Scalability of parallel spatial direct numerical simulations on Intel hypercube and IBM SP1 and SP2 (1995)
  19. Agarwal, R. C.; Gustavson, F. G.; Zubair, M.: Improving performance of linear algebra algorithms for dense matrices, using algorithmic prefetch (1994)
  20. Daydé, M.; Duff, I. S.; Petitet, A.: A parallel block implementation of level-3 BLAS for MIMD vector processors (1994)