Matlab File Exchange 8738. Mittag-Leffler function: This is a MATLAB routine for evaluating the Mittag-Leffler function with two parameters (sometimes also called generalized exponential function). The Mittag-Leffler function with two parameters plays an important role and appears frequently in solutions of fractional differential equations (i.e. differential equations containing fractional derivatives).

References in zbMATH (referenced in 89 articles )

Showing results 1 to 20 of 89.
Sorted by year (citations)

1 2 3 4 5 next

  1. Ajeel, M. Shareef; Gachpazan, M.; Soheili, Ali R.: Sinc-Muntz-Legendre collocation method for solving a class of nonlinear fractional partial differential equations (2021)
  2. Carvalho, F. S.; Braga, J. P.: Thermodynamic consistency by a modified Perkus-Yevick theory using the Mittag-Leffler function (2021)
  3. Fan, Bin; Azaïez, Mejdi; Xu, Chuanju: An extension of the Landweber regularization for a backward time fractional wave problem (2021)
  4. Iqbal, Sajad; Wei, Yujie: Recovery of the time-dependent implied volatility of time fractional Black-Scholes equation using linearization technique (2021)
  5. Luc, Nguyen Hoang; Baleanu, Dumitru; Agarwal, Ravi P.; Long, Le Dinh: Identifying the source function for time fractional diffusion with non-local in time conditions (2021)
  6. McLean, William: Numerical evaluation of Mittag-Leffler functions (2021)
  7. Yang, Fan; Fu, Jun-Liang; Fan, Ping; Li, Xiao-Xiao: Fractional Landweber iterative regularization method for identifying the unknown source of the time-fractional diffusion problem (2021)
  8. Yang, Shuping; Xiong, Xiangtuan; Nie, Yan: Iterated fractional Tikhonov regularization method for solving the spherically symmetric backward time-fractional diffusion equation (2021)
  9. Asl, E. Hengamian; Saberi-Nadjafi, J.; Gachpazan, M.: 2D-fractional Muntz-Legendre polynomials for solving the fractional partial differential equations (2020)
  10. Bulavatsky, V. M.; Bohaienko, V. O.: Some consolidation dynamics problems within the framework of the biparabolic mathematical model and its fractional-differential analog (2020)
  11. Can, Nguyen Huu; Luc, Nguyen Hoang; Baleanu, Dumitru; Zhou, Yong; Long, Le Dinh: Inverse source problem for time fractional diffusion equation with Mittag-Leffler kernel (2020)
  12. Feng, Xiaoli; Li, Peijun; Wang, Xu: An inverse random source problem for the time fractional diffusion equation driven by a fractional Brownian motion (2020)
  13. Kovács, Mihály; Larsson, Stig; Saedpanah, Fardin: Mittag-Leffler Euler integrator for a stochastic fractional order equation with additive noise (2020)
  14. Qu, Haidong; She, Zihang; Liu, Xuan: Homotopy analysis method for three types of fractional partial differential equations (2020)
  15. Shokri, Ali; Mirzaei, Soheila: A pseudo-spectral based method for time-fractional advection-diffusion equation (2020)
  16. Tuan, Nguyen Huy; Zhou, Yong; Long, Le Dinh; Can, Nguyen Huu: Identifying inverse source for fractional diffusion equation with Riemann-Liouville derivative (2020)
  17. Yang, Shuping; Xiong, Xiangtuan; Han, Yaozong: A modified fractional Landweber method for a backward problem for the inhomogeneous time-fractional diffusion equation in a cylinder (2020)
  18. Han, Yaozong; Xiong, Xiangtuan; Xue, Xuemin: A fractional Landweber method for solving backward time-fractional diffusion problem (2019)
  19. Lischke, Anna; Kelly, James F.; Meerschaert, Mark M.: Mass-conserving tempered fractional diffusion in a bounded interval (2019)
  20. Ortigueira, Manuel D.; Lopes, António M.; Tenreiro Machado, José: On the numerical computation of the Mittag-Leffler function (2019)

1 2 3 4 5 next