LOLIB is a library of sample instances for the linear ordering problem. LOLIB includes data as well as optimum solution values. The Linear Ordering Problem is the following question. A set of n objects is given which have to be ordered in a linear sequence. For every pair i and j of objects there are coefficients c_{ij} (c_{ji}) expressing the preference for having i before j (j before i) in this sequence. The task is to find a linear sequence such that the sum of the coefficients that are compatible with this ordering is maximized. A popular application of the Linear Ordering Problem occurs in economics as the so-called Triangulation Problem for Input-Output Matrices. Our data comes from this application.

References in zbMATH (referenced in 83 articles )

Showing results 1 to 20 of 83.
Sorted by year (citations)

1 2 3 4 5 next

  1. Alcaraz, Javier; García-Nové, Eva M.; Landete, Mercedes; Monge, Juan F.: The linear ordering problem with clusters: a new partial ranking (2020)
  2. Hildenbrandt, Achim: A branch-and-cut algorithm for the target visitation problem (2019)
  3. Mirkin, Boris; Fenner, Trevor I.: Distance and consensus for preference relations corresponding to ordered partitions (2019)
  4. García-Nové, Eva M.; Alcaraz, Javier; Landete, Mercedes; Monge, Juan F.; Puerto, Justo: Rank aggregation in cyclic sequences (2017)
  5. Doignon, Jean-Paul; Rexhep, Selim: Primary facets of order polytopes (2016)
  6. Terán-Villanueva, J. David; Fraire Huacuja, Héctor Joaquín; Carpio Valadez, Juan Martín; Pazos Rangel, Rodolfo; Puga Soberanes, Héctor José; Martínez Flores, José A.: A heterogeneous cellular processing algorithm for minimizing the power consumption in wireless communications systems (2015)
  7. Fernández, Elena; Puerto, Justo; Rodríguez-Chía, Antonio M.: On discrete optimization with ordering (2013)
  8. Anjos, Miguel F.; Liers, Frauke: Global approaches for facility layout and VLSI floorplanning (2012)
  9. Caspard, Nathalie; Leclerc, Bruno; Monjardet, Bernard: Finite ordered sets. Concepts, results and uses (2012)
  10. Chistyakov, Vyacheslav V.; Goldengorin, Boris I.; Pardalos, Panos M.: Extremal values of global tolerances in combinatorial optimization with an additive objective function (2012)
  11. Gutin, Gregory; Yeo, Anders: Constraint satisfaction problems parameterized above or below tight bounds: a survey (2012)
  12. Martí, Rafael; Reinelt, Gerhard; Duarte, Abraham: A benchmark library and a comparison of heuristic methods for the linear ordering problem (2012)
  13. Palagi, Laura; Piccialli, Veronica; Rendl, Franz; Rinaldi, Giovanni; Wiegele, Angelika: Computational approaches to MAX-cut (2012)
  14. Pedings, Kathryn E.; Langville, Amy N.; Yamamoto, Yoshitsugu: A minimum violations ranking method (2012)
  15. Chaovalitwongse, W. Art; Oliveira, Carlos A. S.; Chiarini, Bruno; Pardalos, Panos M.; Resende, Mauricio G. C.: Revised GRASP with path-relinking for the linear ordering problem (2011)
  16. Duarte, Abraham; Laguna, Manuel; Martí, Rafael: Tabu search for the linear ordering problem with cumulative costs (2011) ioport
  17. Sukegawa, Noriyoshi; Yamamoto, Yoshitsugu; Zhang, Liyuan: Lagrangian relaxation and pegging test for linear ordering problems (2011)
  18. Wimer, Shmuel; Moiseev, Konstantin; Kolodny, Avinoam: On VLSI interconnect optimization and linear ordering problem (2011)
  19. Buchheim, Christoph; Wiegele, Angelika; Zheng, Lanbo: Exact algorithms for the quadratic linear ordering problem (2010)
  20. Charon, Irène; Hudry, Olivier: An updated survey on the linear ordering problem for weighted or unweighted tournaments (2010)

1 2 3 4 5 next