MATLAB ODE suite

The MATLAB ODE suite. The paper presents mathematical and software developments that are the basis for a suite of programs for the solution of initial value problems y ’ =F(t,y), with initial conditions y(t 0 )=y 0 . The solvers for stiff problems allow the more general form M(t)y ’ =f(t,y) with a nonsingular and sparse matrix M(t). The programs are developed for MATLAB, which influences the choice of methods and their implementation


References in zbMATH (referenced in 367 articles , 1 standard article )

Showing results 1 to 20 of 367.
Sorted by year (citations)

1 2 3 ... 17 18 19 next

  1. Ávila, Andrés I.; González, Galo Javier; Kopecz, Stefan; Meister, Andreas: Extension of modified Patankar-Runge-Kutta schemes to nonautonomous production-destruction systems based on Oliver’s approach (2021)
  2. Chatterjee, Abhishek; Ghaednia, Hamid; Bowling, Alan; Brake, Matthew: Estimation of impact forces during multi-point collisions involving small deformations (2021)
  3. Iavernaro, F.; Mazzia, F.; Mukhametzhanov, M. S.; Sergeyev, Ya. D.: Computation of higher order Lie derivatives on the infinity computer (2021)
  4. Liao, Hong-Lin; Zhang, Zhimin: Analysis of adaptive BDF2 scheme for diffusion equations (2021)
  5. Martinson, W. Duncan; Ninomiya, Hirokazu; Byrne, Helen Mary; Maini, Philip Kumar: Comparative analysis of continuum angiogenesis models (2021)
  6. Walker, B. J.; Gaffney, E. A.: Regularised non-uniform segments and efficient no-slip elastohydrodynamics (2021)
  7. Abdi, Ali; Conte, Dajana: Implementation of second derivative general linear methods (2020)
  8. Abdi, Ali; Hojjati, Gholamreza: Projection of second derivative methods for ordinary differential equations with invariants (2020)
  9. Abdi, Ali; Hojjati, Gholamreza; Sharifi, Mohammad: Implicit-explicit second derivative diagonally implicit multistage integration methods (2020)
  10. Arévalo, Carmen; Jonsson-Glans, Erik; Olander, Josefine; Soto, Monica Selva; Söderlind, Gustaf: A software platform for adaptive high order multistep methods (2020)
  11. Bitar, D.; Ture Savadkoohi, A.; Lamarque, C.-H.; Gourdon, E.; Collet, M.: Extended complexification method to study nonlinear passive control (2020)
  12. Christov, Ivan C.; Ibraguimov, Akif; Islam, Rahnuma: Long-time asymptotics of non-degenerate non-linear diffusion equations (2020)
  13. Ciro S. Campolina: LogLatt: A computational library for the calculus and flows on logarithmic lattices (2020) arXiv
  14. Diniz-Ehrhardt, M. A.; Ferreira, D. G.; Santos, S. A.: Applying the pattern search implicit filtering algorithm for solving a noisy problem of parameter identification (2020)
  15. Gzal, Majdi; Gendelman, O. V.: Edge states and frequency response in nonlinear forced-damped model of valve spring (2020)
  16. Kazaz, Lorin; Pfister, Christian; Ziegler, Pascal; Eberhard, Peter: Transient gear contact simulations using a floating frame of reference approach and higher-order ansatz functions (2020)
  17. Kulikov, G. Yu.: Nested implicit Runge-Kutta pairs of Gauss and Lobatto types with local and global error controls for stiff ordinary differential equations (2020)
  18. Kulikov, G. Yu.; Weiner, R.: Variable-stepsize doubly quasi-consistent singly diagonally implicit two-step peer pairs for solving stiff ordinary differential equations (2020)
  19. Link, Kathryn G.; Sorrells, Matthew G.; Danes, Nicholas A.; Neeves, Keith B.; Leiderman, Karin; Fogelson, Aaron L.: A mathematical model of platelet aggregation in an extravascular injury under flow (2020)
  20. Marasco, A.; Giannino, F.; Iuorio, A.: Modelling competitive interactions and plant-soil feedback in vegetation dynamics (2020)

1 2 3 ... 17 18 19 next