MATLAB ODE suite

The MATLAB ODE suite. The paper presents mathematical and software developments that are the basis for a suite of programs for the solution of initial value problems y ’ =F(t,y), with initial conditions y(t 0 )=y 0 . The solvers for stiff problems allow the more general form M(t)y ’ =f(t,y) with a nonsingular and sparse matrix M(t). The programs are developed for MATLAB, which influences the choice of methods and their implementation


References in zbMATH (referenced in 354 articles , 1 standard article )

Showing results 1 to 20 of 354.
Sorted by year (citations)

1 2 3 ... 16 17 18 next

  1. Iavernaro, F.; Mazzia, F.; Mukhametzhanov, M. S.; Sergeyev, Ya. D.: Computation of higher order Lie derivatives on the infinity computer (2021)
  2. Abdi, Ali; Conte, Dajana: Implementation of second derivative general linear methods (2020)
  3. Abdi, Ali; Hojjati, Gholamreza: Projection of second derivative methods for ordinary differential equations with invariants (2020)
  4. Abdi, Ali; Hojjati, Gholamreza; Sharifi, Mohammad: Implicit-explicit second derivative diagonally implicit multistage integration methods (2020)
  5. Arévalo, Carmen; Jonsson-Glans, Erik; Olander, Josefine; Soto, Monica Selva; Söderlind, Gustaf: A software platform for adaptive high order multistep methods (2020)
  6. Ciro S. Campolina: LogLatt: A computational library for the calculus and flows on logarithmic lattices (2020) arXiv
  7. Diniz-Ehrhardt, M. A.; Ferreira, D. G.; Santos, S. A.: Applying the pattern search implicit filtering algorithm for solving a noisy problem of parameter identification (2020)
  8. Gzal, Majdi; Gendelman, O. V.: Edge states and frequency response in nonlinear forced-damped model of valve spring (2020)
  9. Kazaz, Lorin; Pfister, Christian; Ziegler, Pascal; Eberhard, Peter: Transient gear contact simulations using a floating frame of reference approach and higher-order ansatz functions (2020)
  10. Kulikov, G. Yu.: Nested implicit Runge-Kutta pairs of Gauss and lobatto types with local and global error controls for stiff ordinary differential equations (2020)
  11. Kulikov, G. Yu.; Weiner, R.: Variable-stepsize doubly quasi-consistent singly diagonally implicit two-step peer pairs for solving stiff ordinary differential equations (2020)
  12. Link, Kathryn G.; Sorrells, Matthew G.; Danes, Nicholas A.; Neeves, Keith B.; Leiderman, Karin; Fogelson, Aaron L.: A mathematical model of platelet aggregation in an extravascular injury under flow (2020)
  13. Montagu, E. L.; Norbury, John: Unusual bifurcation of a Neumann boundary value problem (2020)
  14. Oliveira, Karen A.; Berbert, Juliana M.: Crossover in spreading behavior due to memory in population dynamics (2020)
  15. Skvortsov, L. M.: Construction and analysis of explicit adaptive one-step methods for solving stiff problems (2020)
  16. Störkle, Johannes; Eberhard, Peter: Model-based vibration control for optical lenses (2020)
  17. Suarez, Gonzalo P.; Udiani, Oyita; Allan, Brian F.; Price, Candice; Ryan, Sadie J.; Lofgren, Eric; Coman, Alin; Stone, Chris M.; Gallos, Lazaros K.; Fefferman, Nina H.: A generic arboviral model framework for exploring trade-offs between vector control and environmental concerns (2020)
  18. Towne, Aaron; Lozano-Durán, Adrián; Yang, Xiang: Resolvent-based estimation of space-time flow statistics (2020)
  19. Abdi, A.; Jackiewicz, Z.: Towards a code for nonstiff differential systems based on general linear methods with inherent Runge-Kutta stability (2019)
  20. Belov, A. A.; Kalitkin, N. N.: Efficient numerical integration methods for the Cauchy problem for stiff systems of ordinary differential equations (2019)

1 2 3 ... 16 17 18 next