MATLAB ODE suite
The MATLAB ODE suite. The paper presents mathematical and software developments that are the basis for a suite of programs for the solution of initial value problems y ’ =F(t,y), with initial conditions y(t 0 )=y 0 . The solvers for stiff problems allow the more general form M(t)y ’ =f(t,y) with a nonsingular and sparse matrix M(t). The programs are developed for MATLAB, which influences the choice of methods and their implementation
Keywords for this software
References in zbMATH (referenced in 354 articles , 1 standard article )
Showing results 1 to 20 of 354.
Sorted by year (- Iavernaro, F.; Mazzia, F.; Mukhametzhanov, M. S.; Sergeyev, Ya. D.: Computation of higher order Lie derivatives on the infinity computer (2021)
- Abdi, Ali; Conte, Dajana: Implementation of second derivative general linear methods (2020)
- Abdi, Ali; Hojjati, Gholamreza: Projection of second derivative methods for ordinary differential equations with invariants (2020)
- Abdi, Ali; Hojjati, Gholamreza; Sharifi, Mohammad: Implicit-explicit second derivative diagonally implicit multistage integration methods (2020)
- Arévalo, Carmen; Jonsson-Glans, Erik; Olander, Josefine; Soto, Monica Selva; Söderlind, Gustaf: A software platform for adaptive high order multistep methods (2020)
- Ciro S. Campolina: LogLatt: A computational library for the calculus and flows on logarithmic lattices (2020) arXiv
- Diniz-Ehrhardt, M. A.; Ferreira, D. G.; Santos, S. A.: Applying the pattern search implicit filtering algorithm for solving a noisy problem of parameter identification (2020)
- Gzal, Majdi; Gendelman, O. V.: Edge states and frequency response in nonlinear forced-damped model of valve spring (2020)
- Kazaz, Lorin; Pfister, Christian; Ziegler, Pascal; Eberhard, Peter: Transient gear contact simulations using a floating frame of reference approach and higher-order ansatz functions (2020)
- Kulikov, G. Yu.: Nested implicit Runge-Kutta pairs of Gauss and lobatto types with local and global error controls for stiff ordinary differential equations (2020)
- Kulikov, G. Yu.; Weiner, R.: Variable-stepsize doubly quasi-consistent singly diagonally implicit two-step peer pairs for solving stiff ordinary differential equations (2020)
- Link, Kathryn G.; Sorrells, Matthew G.; Danes, Nicholas A.; Neeves, Keith B.; Leiderman, Karin; Fogelson, Aaron L.: A mathematical model of platelet aggregation in an extravascular injury under flow (2020)
- Montagu, E. L.; Norbury, John: Unusual bifurcation of a Neumann boundary value problem (2020)
- Oliveira, Karen A.; Berbert, Juliana M.: Crossover in spreading behavior due to memory in population dynamics (2020)
- Skvortsov, L. M.: Construction and analysis of explicit adaptive one-step methods for solving stiff problems (2020)
- Störkle, Johannes; Eberhard, Peter: Model-based vibration control for optical lenses (2020)
- Suarez, Gonzalo P.; Udiani, Oyita; Allan, Brian F.; Price, Candice; Ryan, Sadie J.; Lofgren, Eric; Coman, Alin; Stone, Chris M.; Gallos, Lazaros K.; Fefferman, Nina H.: A generic arboviral model framework for exploring trade-offs between vector control and environmental concerns (2020)
- Towne, Aaron; Lozano-Durán, Adrián; Yang, Xiang: Resolvent-based estimation of space-time flow statistics (2020)
- Abdi, A.; Jackiewicz, Z.: Towards a code for nonstiff differential systems based on general linear methods with inherent Runge-Kutta stability (2019)
- Belov, A. A.; Kalitkin, N. N.: Efficient numerical integration methods for the Cauchy problem for stiff systems of ordinary differential equations (2019)