MATLAB ODE suite
The MATLAB ODE suite. The paper presents mathematical and software developments that are the basis for a suite of programs for the solution of initial value problems y ’ =F(t,y), with initial conditions y(t 0 )=y 0 . The solvers for stiff problems allow the more general form M(t)y ’ =f(t,y) with a nonsingular and sparse matrix M(t). The programs are developed for MATLAB, which influences the choice of methods and their implementation
Keywords for this software
References in zbMATH (referenced in 405 articles , 1 standard article )
Showing results 1 to 20 of 405.
Sorted by year (- Apiyo, D.; Mouton, J. M.; Louw, C.; Sampson, S. L.; Louw, T. M.: Dynamic mathematical model development and validation of \textitinvitro Mycobacterium smegmatis growth under nutrient- and pH-stress (2022)
- Blühdorn, Johannes; Gauger, Nicolas R.; Kabel, Matthias: AutoMat: automatic differentiation for generalized standard materials on GPUs (2022)
- Nasr, Walid W.: Inventory systems with stochastic and batch demand: computational approaches (2022)
- Siettos, Constantinos; Russo, Lucia: A numerical method for the approximation of stable and unstable manifolds of microscopic simulators (2022)
- Abdi, Ali; Hojjati, Gholamreza: Second derivative backward differentiation formulae for ODEs based on barycentric rational interpolants (2021)
- Alì, Giuseppe; Bilotta, Eleonora; Chiaravalloti, Francesco; Pantano, Pietro; Pezzi, Oreste; Scuro, Carmelo; Valentini, Francesco: Spatiotemporal pattern formation in a ring of Chua’s oscillators (2021)
- Ávila, Andrés I.; González, Galo Javier; Kopecz, Stefan; Meister, Andreas: Extension of modified Patankar-Runge-Kutta schemes to nonautonomous production-destruction systems based on Oliver’s approach (2021)
- Borges, J. S.; Ferreira, J. A.; Romanazzi, G.; Abreu, E.: Drug release from viscoelastic polymeric matrices -- a stable and supraconvergent FDM (2021)
- Chatterjee, Abhishek; Ghaednia, Hamid; Bowling, Alan; Brake, Matthew: Estimation of impact forces during multi-point collisions involving small deformations (2021)
- Coskun, Erhan: On the properties of a single vortex solution of Ginzburg-Landau model of superconductivity (2021)
- Debrabant, Kristian; Kværnø, Anne; Mattsson, Nicky Cordua: Runge-Kutta Lawson schemes for stochastic differential equations (2021)
- Esmaeelzadeh, Zahra; Abdi, Ali; Hojjati, Gholamreza: EBDF-type methods based on the linear barycentric rational interpolants for stiff IVPs (2021)
- Fan, W.: An efficient recursive rotational-coordinate-based formulation of a planar Euler-Bernoulli beam (2021)
- Garashchuk, I. R.: Asynchronous chaos and bifurcations in a model of two coupled identical Hindmarsh-Rose neurons (2021)
- Ghahramani, Ebrahim; Ström, H.; Bensow, R. E.: Numerical simulation and analysis of multi-scale cavitating flows (2021)
- Hsu, Shao-Chen; Tadiparthi, Vaishnav; Bhattacharya, Raktim: A Lagrangian method for constrained dynamics in tensegrity systems with compressible bars (2021)
- Iavernaro, F.; Mazzia, F.; Mukhametzhanov, M. S.; Sergeyev, Ya. D.: Computation of higher order Lie derivatives on the infinity computer (2021)
- Iyaniwura, Sarafa A.; Ward, Michael J.: Localised signalling compartments in 2D coupled by a bulk diffusion field: quorum sensing and synchronous oscillations in the well-mixed limit (2021)
- Jalilian, A.; Abdi, A.; Hojjati, G.: Variable stepsize SDIMSIMs for ordinary differential equations (2021)
- Liao, Hong-Lin; Zhang, Zhimin: Analysis of adaptive BDF2 scheme for diffusion equations (2021)