GLVis

GLVis is a lightweight tool for accurate and flexible finite element visualization. Features: Accurate functional representation of many finite elements. Support for arbitrary high-order and NURBS meshes. Server mode accepting multiple socket connections. Visualization of parallel meshes and solutions. ... and many more. GLVis is based on the MFEM library and is currently used in the BLAST, hypre and XBraid projects. See also our Gallery.


References in zbMATH (referenced in 14 articles )

Showing results 1 to 14 of 14.
Sorted by year (citations)

  1. Kuzmin, Dmitri; Bäcker, Jan-Phillip: An unfitted finite element method using level set functions for extrapolation into deformable diffuse interfaces (2022)
  2. Lee, Chak Shing; Hamon, François P.; Castelletto, Nicola; Vassilevski, Panayot S.; White, Joshua A.: An aggregation-based nonlinear multigrid solver for two-phase flow and transport in porous media (2022)
  3. Anderson, Robert; Andrej, Julian; Barker, Andrew; Bramwell, Jamie; Camier, Jean-Sylvain; Cerveny, Jakub; Dobrev, Veselin; Dudouit, Yohann; Fisher, Aaron; Kolev, Tzanio; Pazner, Will; Stowell, Mark; Tomov, Vladimir; Akkerman, Ido; Dahm, Johann; Medina, David; Zampini, Stefano: MFEM: a modular finite element methods library (2021)
  4. Barker, Andrew T.; Gelever, Stephan V.; Lee, Chak S.; Osborn, Sarah V.; Vassilevski, Panayot S.: Multilevel spectral coarsening for graph Laplacian problems with application to reservoir simulation (2021)
  5. Fairbanks, Hillary R.; Villa, Umberto; Vassilevski, Panayot S.: Multilevel hierarchical decomposition of finite element white noise with application to multilevel Markov chain Monte Carlo (2021)
  6. Fairbanks, Hillary R.; Villa, Umberto; Vassilevski, Panayot S.: Multilevel hierarchical decomposition of finite element white noise with application to multilevel Markov chain Monte Carlo (2021)
  7. Nikl, Jan; Göthel, Ilja; Kuchařík, Milan; Weber, Stefan; Bussmann, Michael: Implicit reduced Vlasov-Fokker-Planck-Maxwell model based on high-order mixed elements (2021)
  8. Lee, Chak Shing; Hamon, François; Castelletto, Nicola; Vassilevski, Panayot S.; White, Joshua A.: Nonlinear multigrid based on local spectral coarsening for heterogeneous diffusion problems (2020)
  9. Robert Anderson, Julian Andrej, Andrew Barker, Jamie Bramwell, Jean-Sylvain Camier, Jakub Cerveny, Veselin Dobrev, Yohann Dudouit, Aaron Fisher, Tzanio Kolev, Will Pazner, Mark Stowell, Vladimir Tomov, Johann Dahm, David Medina, Stefano Zampini: MFEM: a modular finite element methods library (2019) arXiv
  10. Li, Ruipeng; Saad, Yousef: Low-rank correction methods for algebraic domain decomposition preconditioners (2017)
  11. Guermond, Jean-Luc; Popov, Bojan; Tomov, Vladimir: Entropy-viscosity method for the single material Euler equations in Lagrangian frame (2016)
  12. Dobrev, Veselin A.; Ellis, Truman E.; Kolev, Tzanio V.; Rieben, Robert N.: High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics (2013)
  13. Dobrev, Veselin A.; Kolev, Tzanio V.; Rieben, Robert N.: High-order curvilinear finite element methods for Lagrangian hydrodynamics (2012)
  14. Lashuk, I. V.; Vassilevski, P. S.: Element agglomeration coarse Raviart-Thomas spaces with improved approximation properties. (2012)