References in zbMATH (referenced in 26 articles , 1 standard article )

Showing results 1 to 20 of 26.
Sorted by year (citations)

1 2 next

  1. Etienne Côme, Nicolas Jouvin : greed: An R Package for Model-Based Clustering by Greedy Maximization of the Integrated Classification Likelihood (2022) arXiv
  2. Khouja, Rima; Mattei, Pierre-Alexandre; Mourrain, Bernard: Tensor decomposition for learning Gaussian mixtures from moments (2022)
  3. Biernacki, Christophe; Marbac, Matthieu; Vandewalle, Vincent: Gaussian-based visualization of Gaussian and non-Gaussian-based clustering (2021)
  4. Cristina Tortora, Ryan P. Browne, Aisha ElSherbiny, Brian C. Franczak, Paul D. McNicholas: Model-Based Clustering, Classification, and Discriminant Analysis Using the Generalized Hyperbolic Distribution: MixGHD R package (2021) not zbMATH
  5. Radojičić, Una; Nordhausen, Klaus; Virta, Joni: Large-sample properties of unsupervised estimation of the linear discriminant using projection pursuit (2021)
  6. Giordani, Paolo; Ferraro, Maria Brigida; Martella, Francesca: An introduction to clustering with R (2020)
  7. Murphy, Keefe; Murphy, Thomas Brendan: Gaussian parsimonious clustering models with covariates and a noise component (2020)
  8. Biernacki, Christophe; Lourme, Alexandre: Unifying data units and models in (co-)clustering (2019)
  9. Celeux, Gilles; Maugis-Rabusseau, Cathy; Sedki, Mohammed: Variable selection in model-based clustering and discriminant analysis with a regularization approach (2019)
  10. Alexander Foss; Marianthi Markatou: kamila: Clustering Mixed-Type Data in R and Hadoop (2018) not zbMATH
  11. Fop, Michael; Murphy, Thomas Brendan: Variable selection methods for model-based clustering (2018)
  12. Jeffrey Andrews; Jaymeson Wickins; Nicholas Boers; Paul McNicholas: teigen: An R Package for Model-Based Clustering and Classification via the Multivariate t Distribution (2018) not zbMATH
  13. Dang, Utkarsh J.; Punzo, Antonio; McNicholas, Paul D.; Ingrassia, Salvatore; Browne, Ryan P.: Multivariate response and parsimony for Gaussian cluster-weighted models (2017)
  14. Śmieja, Marek; Geiger, Bernhard C.: Semi-supervised cross-entropy clustering with information bottleneck constraint (2017)
  15. Antonio Punzo, Angelo Mazza, Paul D. McNicholas: ContaminatedMixt: An R Package for Fitting Parsimonious Mixtures of Multivariate Contaminated Normal Distributions (2016) arXiv
  16. Marbac, Matthieu; Biernacki, Christophe; Vandewalle, Vincent: Latent class model with conditional dependency per modes to cluster categorical data (2016)
  17. Michael, Semhar; Melnykov, Volodymyr: An effective strategy for initializing the EM algorithm in finite mixture models (2016)
  18. Punzo, Antonio; McNicholas, Paul D.: Parsimonious mixtures of multivariate contaminated normal distributions (2016)
  19. Baudry, Jean-Patrick; Cardoso, Margarida; Celeux, Gilles; Amorim, Maria José; Ferreira, Ana Sousa: Enhancing the selection of a model-based clustering with external categorical variables (2015)
  20. Dang, Utkarsh J.; Browne, Ryan P.; McNicholas, Paul D.: Mixtures of multivariate power exponential distributions (2015)

1 2 next