foxPSL: A fast, optimized and extended PSL implementation. In this paper, we describe {it foxPSL}, a fast, optimized and extended implementation of Probabilistic Soft Logic (PSL) based on the distributed graph processing framework {sc Signal/Collect}. PSL is one of the leading formalisms of statistical relational learning, a recently developed field of machine learning that aims at representing both uncertainty and rich relational structures, usually by combining logical representations with probabilistic graphical models. PSL can be seen as both a probabilistic logic and a template language for hinge-loss Markov Random Fields, a type of continuous Markov Random fields (MRF) in which Maximum a Posteriori inference is very efficient, since it can be formulated as a constrained convex minimization problem, as opposed to a discrete optimization problem for standard MRFs. From the logical perspective, a key feature of PSL is the capability to represent soft truth values, allowing the expression of complex domain knowledge, like degrees of truth, in parallel with uncertainty.par {it foxPSL} supports the full PSL pipeline from problem definition to a distributed solver that implements the Alternating Direction Method of Multipliers (ADMM) consensus optimization. It provides a Domain Specific Language that extends standard PSL with a class system and existential quantifiers, allowing for efficient grounding. Moreover, it implements a series of configurable optimizations, like optimized grounding of constraints and lazy inference, that improve grounding and inference time.par We perform an extensive evaluation, comparing the performance of {it foxPSL} to a state-of-the-art implementation of ADMM consensus optimization in GraphLab, and show an improvement in both inference time and solution quality. Moreover, we evaluate the impact of the optimizations on the execution time and discuss the trade-offs related to each optimization.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element

References in zbMATH (referenced in 2 articles , 1 standard article )

Showing results 1 to 2 of 2.
Sorted by year (citations)

  1. Bach, Stephen H.; Broecheler, Matthias; Huang, Bert; Getoor, Lise: Hinge-loss Markov random fields and probabilistic soft logic (2017)
  2. Magliacane, Sara; Stutz, Philip; Groth, Paul; Bernstein, Abraham: foxPSL: A fast, optimized and extended PSL implementation (2015) ioport