MicrOMEGAs 2.0

micrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model micrOMEGAs 2.0 is a code which calculates the relic density of a stable massive particle in an arbitrary model. The underlying assumption is that there is a conservation law like R-parity in supersymmetry which guarantees the stability of the lightest odd particle. The new physics model must be incorporated in the notation of CalcHEP, a package for the automatic generation of squared matrix elements. Once this is done, all annihilation and coannihilation channels are included automatically in any model. Cross-sections at v=0, relevant for indirect detection of dark matter, are also computed automatically. The package includes three sample models: the minimal supersymmetric standard model (MSSM), the MSSM with complex phases and the NMSSM. Extension to other models, including non-supersymmetric models, is described (Source: http://cpc.cs.qub.ac.uk/summaries/)


References in zbMATH (referenced in 45 articles , 1 standard article )

Showing results 1 to 20 of 45.
Sorted by year (citations)

1 2 3 next

  1. Betancur, Amalia; Palacio, Guillermo; Rivera, Andrés: Inert doublet as multicomponent dark matter (2021)
  2. Das, Debottam; De, Bibhabasu; Mitra, Subhadip: Cancellation in dark matter-nucleon interactions: the role of non-standard-model-like Yukawa couplings (2021)
  3. Casas, J. A.; Chakraborti, M.; Quilis, J.: UV completion of an axial, leptophobic, (Z^\prime) (2020)
  4. Duch, Mateusz; Grzadkowski, Bohdan; Huang, Da: Strong dark matter self-interaction from a stable scalar mediator (2020)
  5. Camargo, Daniel A.; Campos, Miguel D.; de Melo, Téssio B.; Queiroz, Farinaldo S.: A two Higgs doublet model for dark matter and neutrino masses (2019)
  6. Dumont, Béranger: Higgs, supersymmetry and dark matter after run I of the LHC (2017)
  7. The GAMBIT Dark Matter Workgroup: Torsten Bringmann, Jan Conrad, Jonathan M. Cornell, Lars A. Dal, Joakim Edsjo, Ben Farmer, Felix Kahlhoefer, Anders Kvellestad, Antje Putze, Christopher Savage, Pat Scott, Christoph Weniger, Martin White, Sebastian Wild: DarkBit: A GAMBIT module for computing dark matter observables and likelihoods (2017) arXiv
  8. Cabral-Rosetti, Luis G.; Mondragón, Myriam; Reyes-Pérez, Esteban: Anapole moment of the lightest neutralino in the cMSSM (2016)
  9. Allanach, Ben C.: Multiple solutions in supersymmetry and the Higgs (2015)
  10. Enberg, Rikard; Klemm, William; Moretti, Stefano; Munir, Shoaib; Wouda, Glenn: Charged Higgs boson in the (W^\pm) Higgs channel at the Large Hadron Collider (2015)
  11. Allanach, B. C.; George, Damien P.; Nachman, Benjamin: Investigating multiple solutions in the constrained minimal supersymmetric standard model (2014)
  12. Falkowski, Adam; Hochberg, Yonit; Ruderman, Joshua T.: Displaced vertices from X-ray lines (2014)
  13. Basso, L.; Belyaev, A.; Chowdhury, D.; Hirsch, M.; Khalil, S.; Moretti, S.; O’Leary, B.; Porod, W.; Staub, F.: Proposal for generalised supersymmetry Les Houches accord for see-saw models and PDG numbering scheme (2013)
  14. Belyaev, Alexander; Christensen, Neil D.; Pukhov, Alexander: CalcHEP 3.4 for collider physics within and beyond the standard model (2013)
  15. Heeck, Julian; Zhang, He: Exotic charges, multicomponent dark matter and light sterile neutrinos (2013)
  16. Liu, Chun; Lu, Jia-Shu: Dark matter and gauge coupling unification in a supersymmetry model with vector-like matter (2013)
  17. Arbeláez, C.; Hirsch, M.; Reichert, L.: Supersymmetric mass spectra and the seesaw type-I scale (2012)
  18. Ellwanger, Ulrich; Hugonie, Cyril: Higgs bosons near 125 GeVv in the NMSSM with constraints at the GUT scale (2012)
  19. Antoniadis, I.; Dudas, E.; Ghilencea, D. M.; Tziveloglou, P.: Beyond the MSSM Higgs with (d=6) effective operators (2011)
  20. Badziak, Marcin; Olechowski, Marek; Pokorski, Stefan: Yukawa unification in SO(10) with light sparticle spectrum (2011)

1 2 3 next