FreeFem++ is an implementation of a language dedicated to the finite element method. It enables you to solve Partial Differential Equations (PDE) easily. Problems involving PDE (2d, 3d) from several branches of physics such as fluid-structure interactions require interpolations of data on several meshes and their manipulation within one program. FreeFem++ includes a fast 2^d-tree-based interpolation algorithm and a language for the manipulation of data on multiple meshes (as a follow up of bamg). FreeFem++ is written in C++ and the FreeFem++ language is a C++ idiom. It runs on any Unix-like OS (with g++ version 3 or higher, X11R6 or OpenGL with GLUT) Linux, FreeBSD, Solaris 10, Microsoft Windows ( 2000, NT, XP, Vista,7 ) and MacOS X (native version using OpenGL). FreeFem++ replaces the older freefem and freefem+.

References in zbMATH (referenced in 1037 articles , 3 standard articles )

Showing results 1 to 20 of 1037.
Sorted by year (citations)

1 2 3 ... 50 51 52 next

  1. Anderson, Robert; Andrej, Julian; Barker, Andrew; Bramwell, Jamie; Camier, Jean-Sylvain; Cerveny, Jakub; Dobrev, Veselin; Dudouit, Yohann; Fisher, Aaron; Kolev, Tzanio; Pazner, Will; Stowell, Mark; Tomov, Vladimir; Akkerman, Ido; Dahm, Johann; Medina, David; Zampini, Stefano: MFEM: a modular finite element methods library (2021)
  2. Bastian, Peter; Blatt, Markus; Dedner, Andreas; Dreier, Nils-Arne; Engwer, Christian; Fritze, René; Gräser, Carsten; Grüninger, Christoph; Kempf, Dominic; Klöfkorn, Robert; Ohlberger, Mario; Sander, Oliver: The \textscDuneframework: basic concepts and recent developments (2021)
  3. Bespalov, Alex; Rocchi, Leonardo; Silvester, David: T-IFISS: a toolbox for adaptive FEM computation (2021)
  4. Cao, Luling; He, Yinnian; Li, Jian; Yang, Di: Decoupled modified characteristic FEMs for fully evolutionary Navier-Stokes-Darcy model with the Beavers-Joseph interface condition (2021)
  5. Cocquet, Pierre-Henri; Rakotobe, Michaël; Ramalingom, Delphine; Bastide, Alain: Error analysis for the finite element approximation of the Darcy-Brinkman-Forchheimer model for porous media with mixed boundary conditions (2021)
  6. Jia, Xiaofeng; Tang, Zhuyan; Feng, Hui: Numerical analysis of CNLF modular grad-div stabilization method for time-dependent Navier-Stokes equations (2021)
  7. Karban, Pavel; Pánek, David; Orosz, Tamás; Petrášová, Iveta; Doležel, Ivo: FEM based robust design optimization with Agros and Ārtap (2021)
  8. Manimaran, J.; Shangerganesh, L.; Debbouche, Amar: Finite element error analysis of a time-fractional nonlocal diffusion equation with the Dirichlet energy (2021)
  9. Martin, Olivier; Fernandez-Diclo, Yasmil; Coville, Jérôme; Soubeyrand, Samuel: Equilibrium and sensitivity analysis of a spatio-temporal host-vector epidemic model (2021)
  10. Shang, Yueqiang: A new two-level defect-correction method for the steady Navier-Stokes equations (2021)
  11. Zhou, Guanyu; Oikawa, Issei; Kashiwabara, Takahito: The Crouzeix-Raviart element for the Stokes equations with the slip boundary condition on a curved boundary (2021)
  12. Agosti, A.; Marchesi, S.; Scita, G.; Ciarletta, Pasquale: Modelling cancer cell budding in-vitro as a self-organised, non-equilibrium growth process (2020)
  13. Ait Mahiout, Latifa; Panasenko, Grigory; Volpert, Vitaly: Homogenization of the diffusion equation with a singular potential for a model of a biological cell network (2020)
  14. Alberto Paganini, Florian Wechsung: Fireshape: a shape optimization toolbox for Firedrake (2020) arXiv
  15. Ali, Shafqat; Ballarin, Francesco; Rozza, Gianluigi: Stabilized reduced basis methods for parametrized steady Stokes and Navier-Stokes equations (2020)
  16. Almonacid, Javier A.; Gatica, Gabriel N.: A fully-mixed finite element method for the (n)-dimensional Boussinesq problem with temperature-dependent parameters (2020)
  17. Anciaux-Sedrakian, A.; Grigori, L.; Jorti, Z.; Papež, J.; Yousef, S.: Adaptive solution of linear systems of equations based on a posteriori error estimators (2020)
  18. An, Rong: Iteration penalty method for the incompressible Navier-Stokes equations with variable density based on the artificial compressible method (2020)
  19. An, Rong: Error analysis of a new fractional-step method for the incompressible Navier-Stokes equations with variable density (2020)
  20. Assous, Franck; Raichik, Irina: Numerical solution to the 3D static Maxwell equations in axisymmetric singular domains with arbitrary data (2020)

1 2 3 ... 50 51 52 next