GULP is a program for performing a variety of types of simulation on materials using boundary conditions of 0-D (molecules and clusters), 1-D (polymers), 2-D (surfaces, slabs and grain boundaries), or 3-D (periodic solids). The focus of the code is on analytical solutions, through the use of lattice dynamics, where possible, rather than on molecular dynamics. A variety of force fields can be used within GULP spanning the shell model for ionic materials, molecular mechanics for organic systems, the embedded atom model for metals and the reactive REBO potential for hydrocarbons. Analytic derivatives are included up to at least second order for most force fields, and to third order for many.

References in zbMATH (referenced in 20 articles )

Showing results 1 to 20 of 20.
Sorted by year (citations)

  1. Aravind Krishnamoorthy, Ankit Mishra, Deepak Kamal, Sungwook Hong, Ken-ichi Nomura, Subodh Tiwari, Aiichiro Nakano, Rajiv Kalia, Rampi Ramprasad, Priya Vashishta: EZFF: Python Library for Multi-Objective Parameterization and Uncertainty Quantification of Interatomic Forcefields for Molecular Dynamics (2020) arXiv
  2. Avery, Patrick; Falls, Zackary; Zurek, Eva: \textscXtalOptversion r10: an open-source evolutionary algorithm for crystal structure prediction (2017)
  3. VanGessel, Francis G.; Chung, Peter W.: An anisotropic full Brillouin zone model for the three dimensional phonon Boltzmann transport equation (2017)
  4. Falls, Zackary; Lonie, David C.; Avery, Patrick; Shamp, Andrew; Zurek, Eva: \textscXtalOptversion r9: an open-source evolutionary algorithm for crystal structure prediction (2016)
  5. Izergin, Dmitriĭ Borisovich; Zakhar’evich, Dmitriĭ Al’bertovich: The integrated environment for semi-automatic simulations of crystals using GULP program (2016)
  6. Lonie, David C.; Zurek, Eva: \textttXtalOpt: an open-source evolutionary algorithm for crystal structure prediction (2011)
  7. Catlow, C. R. A.; Guo, Z. X.; Miskufova, M.; Shevlin, S. A.; Smith, A. G. H.; Sokol, A. A.; Walsh, A.; Wilson, D. J.; Woodley, S. M.: Advances in computational studies of energy materials (2010)
  8. Dovier, Agostino (ed.); Pontelli, Enrico (ed.): A 25-year perspective on logic programming. Achievements of the Italian Association for Logic Programming, GULP (2010)
  9. Rossi, Gianfranco: Logic programming in Italy: a historical perspective (2010)
  10. Kvashnin, Alexander G.; Sorokin, Pavel B.; Kvashnin, Dmitriĭ G.: Theoretic investigation of mechanical properties of graphene membranes by means of molecular mechanics (2009)
  11. Mellarkod, Veena S.; Gelfond, Michael; Zhang, Yuanlin: Integrating answer set programming and constraint logic programming (2008)
  12. Cantone, Domenico; Nicolosi-Asmundo, Marianna: A sound framework for (\delta)-rule variants in free-variable semantic tableaux (2007)
  13. López Fraguas, Francisco J.; Rodríguez Artalejo, Mario; del Vado Vírseda, Rafael: A new generic scheme for functional logic programming with constraints (2007)
  14. Maranganti, R.; Sharma, P.: A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir)relevance for nanotechnologies (2007)
  15. Balduccini, Marcello; Gelfond, Michael; Nogueira, Monica: Answer set based design of knowledge systems (2006)
  16. Faber, Wolfgang; Konczak, Kathrin: Strong order equivalence (2006)
  17. Tinelli, Cesare; Zarba, Calogero G.: Combining nonstably infinite theories (2005)
  18. Gale, Julian D.; Rohl, Andrew L.: The general utility lattice program (GULP) (2003)
  19. Kantor, I. Yu.; Urusov, V. S.: Atomistic modeling of properties and phase transitions of wustite FeO (2003)
  20. Müller, Paul Heinz; Nollau, Volker; Polovinkin, Aleksandr Ivanovich: Random search methods. (1986)

Further publications can be found at: