ftsa
R package, ftsa: Functional Time Series Analysis. Functions for visualizing, modeling, forecasting and hypothesis testing of functional time series.
Keywords for this software
References in zbMATH (referenced in 12 articles )
Showing results 1 to 12 of 12.
Sorted by year (- Bingham, N. H.: Prediction theory for stationary functional time series (2022)
- Elías, Antonio; Jiménez, Raúl; Shang, Han Lin: On projection methods for functional time series forecasting (2022)
- Meintanis, Simos G.; Hušková, Marie; Hlávka, Zdeněk: Fourier-type tests of mutual independence between functional time series (2022)
- Sang, Peijun; Cao, Jiguo: Functional single-index quantile regression models (2020)
- Slaoui, Yousri: Recursive nonparametric regression estimation for dependent strong mixing functional data (2020)
- Ivanescu, Andrada E.; Crainiceanu, Ciprian M.; Checkley, William: Dynamic child growth prediction: a comparative methods approach (2017)
- Aue, Alexander; Norinho, Diogo Dubart; Hörmann, Siegfried: On the prediction of stationary functional time series (2015)
- Ugarte, Maria D.; Aguilera, Ana M.: More on functional data analysis and other aspects in OODA (2014)
- Shang, Han Lin: Functional time series approach for forecasting very short-term electricity demand (2013)
- Manuel Febrero-Bande; Manuel de la Fuente: Statistical Computing in Functional Data Analysis: The R Package fda.usc (2012) not zbMATH
- Shang, Han Lin; Hyndman, Rob. J.: Nonparametric time series forecasting with dynamic updating (2011)
- Hyndman, Rob J.; Shang, Han Lin: Forecasting functional time series (2009)