EULAG is a numerical solver for all-scale geophysical flows. The underlying anelastic equations are either solved in an EULerian (flux form), or a LAGrangian (advective form) framework. EULAG model is an ideal tool to perform numerical experiments in a virtual laboratory with time-dependent adaptive meshes and within complex, and even time-dependent model geometries. These abilities are due to the unique model design that combines the nonoscillatory forward-in-time (NFT) numerical algorithms and a robust elliptic solver with generalized coordinates. The code is written as a research tool with numerous options controlling the numerical accuracy and to allow for a wide range of numerical sensitivity tests. These capabilities give the researcher confidence in the numerical solutions of his/her problem. The formulation of the model equations allow for various derivatives of the code including codes for stellar atmospheres, ocean currents, sand dune propagation or biomechanical flows. EULAG is a fully parallelized code and is easily portable between different platforms. All the model developments and details of the numerical algorithms are documented in a number of peer reviewed papers by Piotr Smolarkiewicz and his colleagues. The EULAG modeling system is developed and supported by the Cloud Systems Group in the Mesoscale and Microscale Meteorology Division, NCAR.

References in zbMATH (referenced in 28 articles )

Showing results 1 to 20 of 28.
Sorted by year (citations)

1 2 next

  1. Cocetta, Francesco; Gillard, Mike; Szmelter, Joanna; Smolarkiewicz, Piotr K.: Stratified flow past a sphere at moderate Reynolds numbers (2021)
  2. Smolarkiewicz, Piotr K.; Kühnlein, Christian; Wedi, Nils P.: Semi-implicit integrations of perturbation equations for all-scale atmospheric dynamics (2019)
  3. Szmelter, Joanna; Smolarkiewicz, Piotr K.; Zhang, Zhao; Cao, Zhixin: Non-oscillatory forward-in-time integrators for viscous incompressible flows past a sphere (2019)
  4. Prusa, Joseph M.: Computation at a coordinate singularity (2018)
  5. von Larcher, Thomas; Viazzo, Stéphane; Harlander, Uwe; Vincze, Miklos; Randriamampianina, Anthony: Instabilities and small-scale waves within the Stewartson layers of a thermally driven rotating annulus (2018)
  6. Waruszewski, Maciej; Kühnlein, Christian; Pawlowska, Hanna; Smolarkiewicz, Piotr K.: MPDATA: third-order accuracy for variable flows (2018)
  7. Kühnlein, Christian; Smolarkiewicz, Piotr K.: An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics (2017)
  8. Smolarkiewicz, Piotr K.; Kühnlein, Christian; Grabowski, Wojciech W.: A finite-volume module for cloud-resolving simulations of global atmospheric flows (2017)
  9. Marras, Simone; Kelly, James F.; Moragues, Margarida; Müller, Andreas; Kopera, Michal A.; Vázquez, Mariano; Giraldo, Francis X.; Houzeaux, Guillaume; Jorba, Oriol: A review of element-based Galerkin methods for numerical weather prediction: finite elements, spectral elements, and discontinuous Galerkin (2016)
  10. Smolarkiewicz, Piotr K.; Deconinck, Willem; Hamrud, Mats; Kühnlein, Christian; Mozdzynski, George; Szmelter, Joanna; Wedi, Nils P.: A finite-volume module for simulating global all-scale atmospheric flows (2016)
  11. Smolarkiewicz, Piotr K.; Szmelter, Joanna; Xiao, Feng: Simulation of all-scale atmospheric dynamics on unstructured meshes (2016)
  12. Szmelter, Joanna; Zhang, Zhao; Smolarkiewicz, Piotr K.: An unstructured-mesh atmospheric model for nonhydrostatic dynamics: towards optimal mesh resolution (2015)
  13. Cossette, Jean-François; Smolarkiewicz, Piotr K.; Charbonneau, Paul: The Monge-Ampère trajectory correction for semi-Lagrangian schemes (2014)
  14. Hyman, Jeffrey D.; Winter, C. Larrabee: Stochastic generation of explicit pore structures by thresholding Gaussian random fields (2014)
  15. Smolarkiewicz, Piotr K.; Kühnlein, Christian; Wedi, Nils P.: A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics (2014)
  16. Smolarkiewicz, Piotr K.; Szmelter, Joanna; Wyszogrodzki, Andrzej A.: An unstructured-mesh atmospheric model for nonhydrostatic dynamics (2013)
  17. Kelly, James F.; Giraldo, Francis X.: Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: limited-area mode (2012)
  18. Kühnlein, Christian; Smolarkiewicz, Piotr K.; Dörnbrack, Andreas: Modelling atmospheric flows with adaptive moving meshes (2012)
  19. Ruprecht, D.; Krause, R.: Explicit parallel-in-time integration of a linear acoustic-advection system (2012)
  20. Cossette, Jean-François; Smolarkiewicz, Piotr K.: A Monge-Ampère enhancement for semi-Lagrangian methods (2011)

1 2 next