mCRL2

mCRL2 stands for micro Common Representation Language 2. It is a specification language that can be used to specify and analyse the behaviour of distributed systems and protocols and is the successor to µCRL. Extensive theory is available for verifying processes manually. A major part of this theory has been implemented in the accompanying toolset, allowing automatic analysis and verification of systems.


References in zbMATH (referenced in 55 articles , 1 standard article )

Showing results 1 to 20 of 55.
Sorted by year (citations)

1 2 3 next

  1. Basile, Davide; Fantechi, Alessandro; Rucher, Luigi; Mandò, Gianluca: Analysing an autonomous tramway positioning system with the \textscUppaalstatistical model checker (2021)
  2. Rubio, Rubén; Martí-Oliet, Narciso; Pita, Isabel; Verdejo, Alberto: Strategies, model checking and branching-time properties in Maude (2021)
  3. Wißmann, Thorsten; Deifel, Hans-Peter; Milius, Stefan; Schröder, Lutz: From generic partition refinement to weighted tree automata minimization (2021)
  4. Basile, Davide; ter Beek, Maurice H.; Pugliese, Rosario: Synthesis of orchestrations and choreographies: bridging the gap between supervisory control and coordination of services (2020)
  5. Bouwman, Mark; Luttik, Bas; Willemse, Tim: Off-the-shelf automated analysis of liveness properties for just paths (2020)
  6. Aceto, Luca; Fábregas, Ignacio; Gregorio-Rodríguez, Carlos; Ingólfsdóttir, Anna: Logical characterisations, rule formats and compositionality for input-output conformance simulation (2019)
  7. de Putter, Sander; Wijs, Anton: A formal verification technique for behavioural model-to-model transformations (2018)
  8. Gregorio-Rodríguez, Carlos; Llana, Luis; Martínez, Rafael: An axiomatic semantics for (\mathsfioco\underline\mathsfs) conformance relation (2018)
  9. Groote, Jan Friso; Rivera Verduzco, Jao; de Vink, Erik P.: An efficient algorithm to determine probabilistic bisimulation (2018)
  10. Luo, Rubai; Gao, Shasha; Li, Huailin; Zhou, Shisheng: Modeling and verification of reconfigurable printing system based on process algebra (2018)
  11. da Costa Cavalheiro, Simone André; Foss, Luciana; Ribeiro, Leila: Theorem proving graph grammars with attributes and negative application conditions (2017)
  12. Dokter, Kasper; Jongmans, Sung-Shik; Arbab, Farhad; Bliudze, Simon: Combine and conquer: relating BIP and Reo (2017)
  13. Groote, Jan Friso; Jansen, David N.; Keiren, Jeroen J. A.; Wijs, Anton J.: An (\mathcalO(m\logn)) algorithm for computing stuttering equivalence and branching bisimulation (2017)
  14. van Delft, Myrthe; Geuvers, Herman; Willemse, Tim A. C.: A formalisation of consistent consequence for Boolean equation systems (2017)
  15. Barnat, Jiří; Bauch, Petr; Beneš, Nikola; Brim, Luboš; Beran, Jan; Kratochvíla, Tomáš: Analysing sanity of requirements for avionics systems (2016)
  16. Beohar, Harsh; Mousavi, Mohammad Reza: Input-output conformance testing for software product lines (2016)
  17. de Frutos Escrig, David; Keiren, Jeroen J. A.; Willemse, Tim A. C.: Branching bisimulation games (2016)
  18. Ghassemi, Fatemeh; Mousavi, Mohammad Reza: Product line process theory (2016)
  19. Cranen, Sjoerd; Gazda, Maciej; Wesselink, Wieger; Willemse, Tim A. C.: Abstraction in fixpoint logic (2015)
  20. Garavel, Hubert: Revisiting sequential composition in process calculi (2015)

1 2 3 next