Nestedsums library. Symbolic Expansion of Transcendental Functions. Higher transcendental function occur frequently in the calculation of Feynman integrals in quantum field theory. Their expansion in a small parameter is a non-trivial task. We report on a computer program which allows the systematic expansion of certain classes of functions. The algorithms are based on the Hopf algebra of nested sums. The program is written in C++ and uses the GiNaC library.

References in zbMATH (referenced in 26 articles , 1 standard article )

Showing results 1 to 20 of 26.
Sorted by year (citations)

1 2 next

  1. Abreu, Samuel; Britto, Ruth; Duhr, Claude; Gardi, Einan; Matthew, James: From positive geometries to a coaction on hypergeometric functions (2020)
  2. Caron-Huot, Simon; Dixon, Lance J.; von Hippel, Matt; McLeod, Andrew J.; Papathanasiou, Georgios: The double pentaladder integral to all orders (2018)
  3. Del Duca, Vittorio; Druc, Stefan; Drummond, James; Duhr, Claude; Dulat, Falko; Marzucca, Robin; Papathanasiou, Georgios; Verbeek, Bram: The seven-gluon amplitude in multi-Regge kinematics beyond leading logarithmic accuracy (2018)
  4. Adams, Luise; Bogner, Christian; Weinzierl, Stefan: The iterated structure of the all-order result for the two-loop sunrise integral (2016)
  5. Del Duca, Vittorio; Druc, Stefan; Drummond, James; Duhr, Claude; Dulat, Falko; Marzucca, Robin; Papathanasiou, Georgios; Verbeek, Bram: Multi-Regge kinematics and the moduli space of Riemann spheres with marked points (2016)
  6. Bogner, Christian; Brown, Francis: Feynman integrals and iterated integrals on moduli spaces of curves of genus zero (2015)
  7. Panzer, Erik: Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals (2015)
  8. Greynat, David; Sesma, Javier; Vulvert, Grégory: Derivatives of the Pochhammer and reciprocal Pochhammer symbols and their use in epsilon-expansions of Appell and Kampé de Fériet functions (2014)
  9. Ablinger, Jakob; Blümlein, Johannes: Harmonic sums, polylogarithms, special numbers, and their generalizations (2013)
  10. Ablinger, Jakob; Blümlein, Johannes; Schneider, Carsten: Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms (2013)
  11. Boels, Rutger H.: On the field theory expansion of superstring five point amplitudes (2013)
  12. Huang, Zhi-Wei; Liu, Jueping: NumExp: numerical epsilon expansion of hypergeometric functions (2013)
  13. Bierenbaum, Isabella; Czakon, Michał; Mitov, Alexander: The singular behavior of one-loop massive QCD amplitudes with one external soft gluon (2012)
  14. Grozin, A. G.: Massless two-loop self-energy diagram: historical review (2012)
  15. Bogner, Christian; Weinzierl, Stefan: Feynman graphs in perturbative quantum field theory (2011)
  16. Bork, L. V.; Kazakov, D. I.; Vartanov, G. S.: On form factors in (\mathcalN= 4) SYM (2011)
  17. Bytev, Vladimir V.; Kalmykov, Mikhail Yu.; Kniehl, Bernd A.: Differential reduction of generalized hypergeometric functions from Feynman diagrams: one-variable case (2010)
  18. Huber, Tobias; Maître, Daniel: Hypexp 2, expanding hypergeometric functions about half-integer parameters (2008)
  19. Huber, T.; Maître, D.: Hypexp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters (2006)
  20. Maître, D.: HPL, a Mathematica implementation of the harmonic polylogarithms (2006)

1 2 next