CutFEM

CutFEM: Discretizing geometry and partial differential equations. We discuss recent advances on robust unfitted finite element methods on cut meshes. These methods are designed to facilitate computations on complex geometries obtained, for example, from computer-aided design or image data from applied sciences. Both the treatment of boundaries and interfaces and the discretization of PDEs on surfaces are discussed and illustrated numerically.


References in zbMATH (referenced in 109 articles )

Showing results 21 to 40 of 109.
Sorted by year (citations)
  1. Burman, Erik; Elfverson, Daniel; Hansbo, Peter; Larson, Mats G.; Larsson, Karl: Hybridized CutFEM for elliptic interface problems (2019)
  2. Burman, Erik; Elfverson, Daniel; Hansbo, Peter; Larson, Mats G.; Larsson, Karl: Cut topology optimization for linear elasticity with coupling to parametric nondesign domain regions (2019)
  3. Burman, Erik; Hansbo, Peter; Larson, Mats G.: A simple finite element method for elliptic bulk problems with embedded surfaces (2019)
  4. Burman, Erik; Hansbo, Peter; Larson, Mats G.; Larsson, Karl: Cut finite elements for convection in fractured domains (2019)
  5. Burman, Erik; Hansbo, Peter; Larson, Mats G.; Larsson, Karl; Massing, André: Finite element approximation of the Laplace-Beltrami operator on a surface with boundary (2019)
  6. Burman, Erik; Hansbo, Peter; Larson, Mats G.; Samvin, David: A cut finite element method for elliptic bulk problems with embedded surfaces (2019)
  7. Burman, Erik; Hansbo, Peter; Larson, Mats G.; Zahedi, Sara: Stabilized CutFEM for the convection problem on surfaces (2019)
  8. Cao, Shuhao; Chen, Long: Anisotropic error estimates of the linear nonconforming virtual element methods (2019)
  9. Cerroni, Daniele; Radu, Florin Adrian; Zunino, Paolo: Numerical solvers for a poromechanic problem with a moving boundary (2019)
  10. Claus, Susanne; Kerfriden, Pierre: A CutFEM method for two-phase flow problems (2019)
  11. de Prenter, F.; Verhoosel, C. V.; van Brummelen, E. H.: Preconditioning immersed isogeometric finite element methods with application to flow problems (2019)
  12. Dokken, Jørgen S.; Funke, Simon W.; Johansson, August; Schmidt, Stephan: Shape optimization using the finite element method on multiple meshes with Nitsche coupling (2019)
  13. Duprez, Michel; Lleras, Vanessa; Lozinski, Alexei: Finite element method with local damage of the mesh (2019)
  14. Elfverson, Daniel; Larson, Mats G.; Larsson, Karl: A new least squares stabilized Nitsche method for cut isogeometric analysis (2019)
  15. Guo, Ruchi; Lin, Tao: A higher degree immersed finite element method based on a Cauchy extension for elliptic interface problems (2019)
  16. Gürkan, Ceren; Massing, André: A stabilized cut discontinuous Galerkin framework for elliptic boundary value and interface problems (2019)
  17. Han, Zhilin; Stoter, Stein K. F.; Wu, Chien-Ting; Cheng, Changzheng; Mantzaflaris, Angelos; Mogilevskaya, Sofia G.; Schillinger, Dominik: Consistent discretization of higher-order interface models for thin layers and elastic material surfaces, enabled by isogeometric cut-cell methods (2019)
  18. Harari, Isaac; Albocher, Uri: Complementary solutions of Nitsche’s method (2019)
  19. Henyš, Petr; Čapek, Lukáš; Březina, Jan: Comparison of current methods for implementing periodic boundary conditions in multi-scale homogenisation (2019)
  20. Johansson, August; Kehlet, Benjamin; Larson, Mats G.; Logg, Anders: Multimesh finite element methods: solving PDEs on multiple intersecting meshes (2019)