Torcont

TorCont: Computation and Continuation of Quasiperiodic Invariant Tori, software package. Torcont is a software package for the computation and continuation of quasiperiodic invariant tori. A full description and examples of use can be found in the torcont user manual, the theoretical background is explained in the preprint Continuation of quasi-periodic invariant tori. This continuation package consists of finder and continuer programs. It contains algorithms for computation (finder) and continuation (continuer) of fixed points (fpfind, fpcont), periodic solutions of autonomous and periodically forced systems (pofind, pocont) and quasiperiodic solutions of autonomous and periodically forced systems (torfind, torcont; torfind4, torcont4). ...


References in zbMATH (referenced in 26 articles )

Showing results 1 to 20 of 26.
Sorted by year (citations)

1 2 next

  1. Klimina, L. A.: Method for forming autorotations in controllable mechanical system with two degrees of freedom (2020)
  2. Guillot, Louis; Cochelin, Bruno; Vergez, Christophe: A Taylor series-based continuation method for solutions of dynamical systems (2019)
  3. Miyaji, Tomoyuki; Ogawa, Toshiyuki; Sekisaka, Ayuki: Rippling rectangular waves for a modified Benney equation (2018)
  4. Canadell, Marta; Haro, Àlex: Computation of quasi-periodic normally hyperbolic invariant tori: algorithms, numerical explorations and mechanisms of breakdown (2017)
  5. Das, Suddhasattwa; Saiki, Yoshitaka; Sander, Evelyn; Yorke, James A.: Quantitative quasiperiodicity (2017)
  6. Laakso, Teemu; Kaasalainen, Mikko: Poincaré inverse problem and torus construction in phase space (2016)
  7. Luque, Alejandro; Villanueva, Jordi: A numerical method for computing initial conditions of Lagrangian invariant tori using the frequency map (2016)
  8. Bakri, Taoufik; Kuznetsov, Yuri A.; Verhulst, Ferdinand: Torus bifurcations in a mechanical system (2015)
  9. Buono, Pietro-Luciano; Collera, Juancho A.: Symmetry-breaking bifurcations in rings of delay-coupled semiconductor lasers (2015)
  10. Canadell, Marta; Haro, Àlex: Parameterization method for computing quasi-periodic reducible normally hyperbolic invariant tori (2015)
  11. Detroux, T.; Renson, L.; Masset, L.; Kerschen, G.: The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems (2015)
  12. Kuehn, Christian: Efficient gluing of numerical continuation and a multiple solution method for elliptic PDEs (2015)
  13. Veltz, Romain; Sejnowski, Terrence J.: Periodic forcing of inhibition-stabilized networks: nonlinear resonances and phase-amplitude coupling (2015)
  14. Bakri, Taoufik; Verhulst, Ferdinand: Bifurcations of quasi-periodic dynamics: torus breakdown (2014)
  15. Kolemen, Egemen; Kasdin, N. Jeremy; Gurfil, Pini: Multiple poincaré sections method for finding the quasiperiodic orbits of the restricted three body problem (2012)
  16. Vitolo, Renato; Broer, Henk; Simó, Carles: Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems (2011)
  17. Sahai, Tuhin: Backbone transitions and invariant tori in forced micromechanical oscillators with optical detection (2010)
  18. Sánchez, J.; Net, M.; Simó, C.: Computation of invariant tori by Newton-Krylov methods in large-scale dissipative systems (2010)
  19. Houghton, S. M.; Tobias, S. M.; Knobloch, E.; Proctor, M. R. E.: Bistability in the complex Ginzburg-Landau equation with drift (2009)
  20. Rasmussen, Bryan; Dieci, Luca: A geometrical method for the approximation of invariant tori (2008)

1 2 next