Cantera

Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Cantera is a suite of object-oriented software tools for problems involving chemical kinetics, thermodynamics, and/or transport processes. Cantera provides types (or classes) of objects representing phases of matter, interfaces between these phases, reaction managers, time-dependent reactor networks, and steady one-dimensional reacting flows. Cantera is currently used for applications including combustion, detonations, electrochemical energy conversion and storage, fuel cells, batteries, aqueous electrolyte solutions, plasmas, and thin film deposition.


References in zbMATH (referenced in 22 articles )

Showing results 1 to 20 of 22.
Sorted by year (citations)

1 2 next

  1. Victoria B. Stephens, David O. Lignell: One-dimensional turbulence (ODT): Computationally efficient modeling and simulation of turbulent flows (2021) not zbMATH
  2. Acampora, Luigi; Marra, Francesco S.: Numerical algorithms for the parametric continuation of stiff ODEs deriving from the modeling of combustion with detailed chemical mechanisms (2020)
  3. Cuadra, Alberto; Huete, César; Vera, Marcos: Effect of equivalence ratio fluctuations on planar detonation discontinuities (2020)
  4. Deng, Xi; Boivin, Pierre: Diffuse interface modelling of reactive multi-phase flows applied to a sub-critical cryogenic jet (2020)
  5. Sawant, N.; Dorschner, B.; Karlin, I. V.: Consistent lattice Boltzmann model for multicomponent mixtures (2020)
  6. Udit Gupta; Dionisios G. Vlachos: Reaction Network Viewer ReNView (2020) not zbMATH
  7. Yang, Qi; Zhao, Peng; Ge, Haiwen: reactingfoam-SCI: an open source CFD platform for reacting flow simulation (2019)
  8. Hernández Pérez, Francisco E.; Mukhadiyev, Nurzhan; Xu, Xiao; Sow, Aliou; Lee, Bok Jik; Sankaran, Ramanan; Im, Hong G.: Direct numerical simulations of reacting flows with detailed chemistry using many-core/GPU acceleration (2018)
  9. Radulescu, Matei I.; Borzou, Bijan: Dynamics of detonations with a constant mean flow divergence (2018)
  10. Bryan W. Weber, Chih-Jen Sung: UConnRCMPy: Python-based data analysis for rapid compression machines (2017) arXiv
  11. Bryan W. Weber, Kyle E. Niemeyer: ChemKED: a human- and machine-readable data standard for chemical kinetics experiments (2017) arXiv
  12. Fooladgar, Ehsan; Chan, C. K.; Nogenmyr, Karl-Johan: An accelerated computation of combustion with finite-rate chemistry using LES and an open source library for in-situ-adaptive tabulation (2017)
  13. Magri, Luca: On indirect noise in multicomponent nozzle flows (2017)
  14. Maxwell, Brian McN.; Bhattacharjee, R. R.; Lau-Chapdelaine, S. S. M.; Falle, S. A. E. G.; Sharpe, G. J.; Radulescu, M. I.: Influence of turbulent fluctuations on detonation propagation (2017)
  15. Niemeyer, Kyle E.; Curtis, Nicholas J.; Sung, Chih-Jen: \textttpyJac: analytical Jacobian generator for chemical kinetics (2017)
  16. Sousa, Jorge; Braun, James; Paniagua, Guillermo: Development of a fast evaluation tool for rotating detonation combustors (2017)
  17. Bauman, Paul T.; Stogner, Roy H.: GRINS: a multiphysics framework based on the libMesh finite element library (2016) ioport
  18. Hansen, M. A.; Sutherland, J. C.: Pseudotransient continuation for combustion simulation with detailed reaction mechanisms (2016)
  19. Yonkee, Nathan; Sutherland, James C.: PoKiTT: exposing task and data parallelism on heterogeneous architectures for detailed chemical kinetics, transport, and thermodynamics calculations (2016)
  20. Lv, Yu; Ihme, Matthias: Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion (2014)

1 2 next