SfePy

SfePy - Write Your Own FE Application. SfePy (Simple Finite Elements in Python) is a framework for solving various kinds of problems (mechanics, physics, biology, ...) described by partial differential equations in two or three space dimensions by the finite element method. The paper illustrates its use in an interactive environment or as a framework for building custom finite-element based solvers.


References in zbMATH (referenced in 19 articles , 1 standard article )

Showing results 1 to 19 of 19.
Sorted by year (citations)

  1. Lukeš, Vladimír; Rohan, Eduard: Homogenization of large deforming fluid-saturated porous structures (2022)
  2. Gbikpi-Benissan, Guillaume; Magoulès, Frédéric: Asynchronous substructuring method with alternating local and global iterations (2021)
  3. Rohan, Eduard; Cimrman, Robert: Modelling wave dispersion in fluid saturating periodic scaffolds (2021)
  4. Rohan, Eduard; Cimrman, Robert; Naili, Salah: Modelling of acoustic waves in homogenized fluid-saturated deforming poroelastic periodic structures under permanent flow (2021)
  5. Du, Xiaoxiao; Zhao, Gang; Wang, Wei; Guo, Mayi; Zhang, Ran; Yang, Jiaming: NLIGA: a MATLAB framework for nonlinear isogeometric analysis (2020)
  6. Tom Gustafsson; G. D. McBain: scikit-fem: A Python package for finite element assembly (2020) not zbMATH
  7. Cimrman, Robert; Lukeš, Vladimír; Rohan, Eduard: Multiscale finite element calculations in Python using sfepy (2019)
  8. Rohan, E.; Lukeš, V.: Homogenization of the vibro-acoustic transmission on perforated plates (2019)
  9. Turjanicová, Jana; Rohan, Eduard; Lukeš, Vladimír: Homogenization based two-scale modelling of ionic transport in fluid saturated deformable porous media (2019)
  10. Cimrman, Robert; Novák, Matyáš; Kolman, Radek; Tuma, Miroslav; Plešek, Jiří; Vackář, Jiří: Convergence study of isogeometric analysis based on Bézier extraction in electronic structure calculations (2018)
  11. Cimrman, Robert; Novák, Matyáš; Kolman, Radek; Tůma, Miroslav; Vackář, Jiří: Isogeometric analysis in electronic structure calculations (2018)
  12. Rohan, Eduard; Lukeš, Vladimír; Jonášová, Alena: Modeling of the contrast-enhanced perfusion test in liver based on the multi-compartment flow in porous media (2018)
  13. Walker, Shawn W.: FELICITY: a Matlab/C++ toolbox for developing finite element methods and simulation modeling (2018)
  14. Kochová, Petra; Cimrman, Robert; Štengl, Milan; Ošťádal, Bohuslav; Tonar, Zbyněk: A mathematical model of the carp heart ventricle during the cardiac cycle (2015)
  15. Kuehn, Christian: Efficient gluing of numerical continuation and a multiple solution method for elliptic PDEs (2015)
  16. Rohan, E.; Cimrman, R.; Miara, B.: Modelling response of phononic Reissner-Mindlin plates using a spectral decomposition (2015)
  17. Rohan, E.; Lukeš, V.: Modeling nonlinear phenomena in deforming fluid-saturated porous media using homogenization and sensitivity analysis concepts (2015)
  18. Zakharov, E. V.; Kalinin, A. V.: Numerical solution of the three-dimensional Dirichlet problem for inhomogeneous media by the method of integral equations (2013)
  19. Rohan, E.; Cimrman, R.: Multiscale FE simulation of diffusion-deformation processes in homogenized dual-porous media (2012)