PyFR

PyFR is an open-source Python based framework for solving advection-diffusion type problems on streaming architectures using the Flux Reconstruction approach of Huynh. The framework is designed to solve a range of governing systems on mixed unstructured grids containing various element types. It is also designed to target a range of hardware platforms via use of an in-built domain specific language derived from the Mako templating engine


References in zbMATH (referenced in 31 articles , 1 standard article )

Showing results 1 to 20 of 31.
Sorted by year (citations)

1 2 next

  1. Álvarez-Farré, Xavier; Gorobets, Andrey; Trias, F. Xavier: A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers (2021)
  2. Frontin, Cory V.; Walters, Gage S.; Witherden, Freddie D.; Lee, Carl W.; Williams, David M.; Darmofal, David L.: Foundations of space-time finite element methods: polytopes, interpolation, and integration (2021)
  3. Kashi, Aditya; Nadarajah, Sivakumaran: An asynchronous incomplete block LU preconditioner for computational fluid dynamics on unstructured grids (2021)
  4. Krais, Nico; Beck, Andrea; Bolemann, Thomas; Frank, Hannes; Flad, David; Gassner, Gregor; Hindenlang, Florian; Hoffmann, Malte; Kuhn, Thomas; Sonntag, Matthias; Munz, Claus-Dieter: FLEXI: a high order discontinuous Galerkin framework for hyperbolic-parabolic conservation laws (2021)
  5. Luporini, Fabio; Louboutin, Mathias; Lange, Michael; Kukreja, Navjot; Witte, Philipp; Hückelheim, Jan; Yount, Charles; Kelly, Paul H. J.; Herrmann, Felix J.; Gorman, Gerard J.: Architecture and performance of Devito, a system for automated stencil computation (2020)
  6. Moxey, David; Amici, Roman; Kirby, Mike: Efficient matrix-free high-order finite element evaluation for simplicial elements (2020)
  7. Navah, Farshad; de la Llave Plata, Marta; Couaillier, Vincent: A high-order multiscale approach to turbulence for compact nodal schemes (2020)
  8. Wang, Lai; Gobbert, Matthias K.; Yu, Meilin: A dynamically load-balanced parallel (p)-adaptive implicit high-order flux reconstruction method for under-resolved turbulence simulation (2020)
  9. Carlberg, Kevin T.; Jameson, Antony; Kochenderfer, Mykel J.; Morton, Jeremy; Peng, Liqian; Witherden, Freddie D.: Recovering missing CFD data for high-order discretizations using deep neural networks and dynamics learning (2019)
  10. Iyer, A. S.; Witherden, F. D.; Chernyshenko, S. I.; Vincent, P. E.: Identifying eigenmodes of averaged small-amplitude perturbations to turbulent channel flow (2019)
  11. Vermeire, B. C.; Loppi, N. A.; Vincent, P. E.: Optimal Runge-Kutta schemes for pseudo time-stepping with high-order unstructured methods (2019)
  12. Vermeire, Brian C.: Paired explicit Runge-Kutta schemes for stiff systems of equations (2019)
  13. Abide, Stéphane; Viazzo, Stéphane; Raspo, Isabelle; Randriamampianina, Anthony: Higher-order compact scheme for high-performance computing of stratified rotating flows (2018)
  14. Álvarez, X.; Gorobets, A.; Trias, F. X.; Borrell, R.; Oyarzun, G.: HPC(^2) -- a fully-portable, algebra-based framework for heterogeneous computing. Application to CFD (2018)
  15. Crabill, J.; Witherden, F. D.; Jameson, A.: A parallel direct cut algorithm for high-order overset methods with application to a spinning golf ball (2018)
  16. Gorobets, A.; Soukov, S.; Bogdanov, P.: Multilevel parallelization for simulating compressible turbulent flows on most kinds of hybrid supercomputers (2018)
  17. Hassanaly, Malik; Koo, Heeseok; Lietz, Christopher F.; Chong, Shao Teng; Raman, Venkat: A minimally-dissipative low-Mach number solver for complex reacting flows in openfoam (2018)
  18. Magee, Daniel J.; Niemeyer, Kyle E.: Accelerating solutions of one-dimensional unsteady PDEs with GPU-based swept time-space decomposition (2018)
  19. Ranocha, Hendrik: Generalised summation-by-parts operators and variable coefficients (2018)
  20. Sheshadri, Abhishek; Jameson, Antony: An analysis of stability of the flux reconstruction formulation on quadrilateral elements for the linear advection-diffusion equation (2018)

1 2 next