netmeta

R package netmeta. Network Meta-Analysis using Frequentist Methods. A comprehensive set of functions providing frequentist methods for network meta-analysis and supporting Schwarzer et al. (2015) <<a href=”http://dx.doi.org/10.1007/978-3-319-21416-0”>doi:10.1007/978-3-319-21416-0</a>>, Chapter 8 ”Network Meta-Analysis”: - frequentist network meta-analysis following Rücker (2012) <<a href=”http://dx.doi.org/10.1002/jrsm.1058”>doi:10.1002/jrsm.1058</a>>; - net heat plot and design-based decomposition of Cochran’s Q according to Krahn et al. (2013) <<a href=”http://dx.doi.org/10.1186/1471-2288-13-35”>doi:10.1186/1471-2288-13-35</a>>; - measures characterizing the flow of evidence between two treatments by König et al. (2013) <<a href=”http://dx.doi.org/10.1002/sim.6001”>doi:10.1002/sim.6001</a>>; - ranking of treatments (frequentist analogue of SUCRA) according to Rücker & Schwarzer (2015) <<a href=”http://dx.doi.org/10.1186/s12874-015-0060-8”>doi:10.1186/s12874-015-0060-8</a>>; - automated drawing of network graphs described in Rücker & Schwarzer (2016) <<a href=”http://dx.doi.org/10.1002/jrsm.1143”>doi:10.1002/jrsm.1143</a>>.


References in zbMATH (referenced in 12 articles , 1 standard article )

Showing results 1 to 12 of 12.
Sorted by year (citations)

  1. Li, Mengke; Liu, Yukun; Li, Pengfei; Qin, Jing: Empirical likelihood meta-analysis with publication bias correction under copas-like selection model (2022)
  2. Böhning, Dankmar; Sangnawakij, Patarawan: Count outcome meta-analysis for comparing treatments by fusing mixed data sources: comparing interventions using across report information (2021)
  3. Li, Mengke; Fan, Yan; Liu, Yang; Liu, Yukun: Diagnostic test meta-analysis by empirical likelihood under a Copas-like selection model (2021)
  4. Weber, S., Li, Y., Seaman III, J. W., Kakizume, T., Schmidli, H.: Applying Meta-Analytic-Predictive Priors with the R Bayesian Evidence Synthesis Tools (2021) not zbMATH
  5. Rücker, Gerta; Petropoulou, Maria; Schwarzer, Guido: Network meta-analysis of multicomponent interventions (2020)
  6. Yamaguchi, Yusuke; Maruo, Kazushi: Bivariate beta-binomial model using Gaussian copula for bivariate meta-analysis of two binary outcomes with low incidence (2019)
  7. Dong, Gaohong: Meta-analysis for rare events as binary outcomes (2017)
  8. Lifeng Lin; Jing Zhang; James Hodges; Haitao Chu: Performing Arm-Based Network Meta-Analysis in R with the pcnetmeta Package (2017) not zbMATH
  9. Schwarzer, Guido; Carpenter, James R.; Rücker, Gerta: Meta-analysis with R (2015)
  10. Carpenter, James; Rücker, Gerta; Schwarzer, Guido: Assessing the sensitivity of meta-analysis to selection bias: a multiple imputation approach (2011)
  11. Rücker, Gerta; Carpenter, James R.; Schwarzer, Guido: Detecting and adjusting for small-study effects in meta-analysis (2011)
  12. Rücker, Gerta; Schwarzer, Guido; Carpenter, James R.; Binder, Harald; Schumacher, Martin: Treatment-effect estimates adjusted for small-study effects via a limit meta-analysis (2011)