BH
R package BH. Boost C++ Header Files. Boost provides free peer-reviewed portable C++ source libraries. A large part of Boost is provided as C++ template code which is resolved entirely at compile-time without linking. This package aims to provide the most useful subset of Boost libraries for template use among CRAN package. By placing these libraries in this package, we offer a more efficient distribution system for CRAN as replication of this code in the sources of other packages is avoided. As of release 1.62.0-1, the following Boost libraries are included: ’algorithm’ ’any’ ’atomic’ ’bimap’ ’bind’ ’circular_buffer’ ’concept’ ’config’ ’container’ ’date’_’time’ ’detail’ ’dynamic_bitset’ ’exception’ ’filesystem’ ’flyweight’ ’foreach’ ’functional’ ’fusion’ ’geometry’ ’graph’ ’heap’ ’icl’ ’integer’ ’interprocess’ ’intrusive’ ’io’ ’iostreams’ ’iterator’ ’math’ ’move’ ’mpl’ ’multiprcecision’ ’numeric’ ’pending’ ’phoenix’ ’preprocessor’ ’propery_tree’ ’random’ ’range’ ’scope_exit’ ’smart_ptr’ ’spirit’ ’tuple’ ’type_traits’ ’typeof’ ’unordered’ ’utility’ ’uuid’.
Keywords for this software
References in zbMATH (referenced in 5 articles )
Showing results 1 to 5 of 5.
Sorted by year (- Cao, J., Genton, M. G., Keyes, D. E., Turkiyyah, G. M. : tlrmvnmvt: Computing High-Dimensional Multivariate Normal and Student-t Probabilities with Low-Rank Methods in R (2022) not zbMATH
- Michael Stephanou, Melvin Varughese: hermiter: R package for Sequential Nonparametric Estimation (2021) arXiv
- Weber, S., Li, Y., Seaman III, J. W., Kakizume, T., Schmidli, H.: Applying Meta-Analytic-Predictive Priors with the R Bayesian Evidence Synthesis Tools (2021) not zbMATH
- Oleksii Pokotylo; Pavlo Mozharovskyi; Rainer Dyckerhoff: Depth and Depth-Based Classification with R Package ddalpha (2019) not zbMATH
- Michael Kane; John Emerson; Stephen Weston: Scalable Strategies for Computing with Massive Data (2013) not zbMATH