Menu
  • About & Contact
  • Feedback
  • Contribute
  • Help
  • zbMATH

swMATH

swmath-logo
  • Search
  • Advanced search
  • Browse
  • browse software by name
  • browse software by keywords
  • browse software by MSC
  • browse software by types

denoiseR

R package denoiseR: Regularized Low Rank Matrix Estimation. Estimate a low rank matrix from noisy data using singular values thresholding and shrinking functions. Impute missing values with matrix completion.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element

  • matrix completion
  • empirical Bayes
  • transposable data
  • hierarchical data
  • low sample size
  • high reliability
  • multiway data
  • RNA-seq
  • hidden confounding
  • EM algorithm
  • unobserved confounding
  • unwanted variation
  • negative control
  • multivariate analysis
  • distributed computation
  • anomaly detection
  • informative missing values
  • low-rank matrix estimation
  • batch effect
  • matrix factorization
  • regularized regression
  • gene expression
  • correspondence analysis
  • Lévy bootstrap
  • denoising
  • accelerated proximal gradient method
  • variational approximation
  • Mahalanobis distance
  • normal means
  • nuclear norm penalty

  • URL: cran.r-project.org/web...
  • Code
  • InternetArchive
  • Manual: cran.r-project.org/web...
  • Authors: Julie Josse, Sylvain Sardy, Stefan Wager

  • Add information on this software.


  • Related software:
  • R
  • missForest
  • Eigenstrat
  • PMA
  • FactoMineR
  • softImpute
  • LowRankModels
  • Pyglrm
  • GitHub
  • outliers
  • Show more...
  • ICS
  • mvoutlier
  • jomo
  • abodOutlier
  • Rlof
  • flashr
  • extremevalues
  • depth
  • CerioliOutlierDetection
  • ICSShiny
  • Show less...

References in zbMATH (referenced in 8 articles )

Showing results 1 to 8 of 8.
y Sorted by year (citations)

  1. Gerard, David; Stephens, Matthew: Unifying and generalizing methods for removing unwanted variation based on negative controls (2021)
  2. Wang, Wei; Stephens, Matthew: Empirical Bayes matrix factorization (2021)
  3. Sportisse, Aude; Boyer, Claire; Josse, Julie: Imputation and low-rank estimation with missing not at random data (2020)
  4. Griffin, Maryclare; Hoff, Peter D.: Lasso ANOVA decompositions for matrix and tensor data (2019)
  5. Husson, François; Josse, Julie; Narasimhan, Balasubramanian; Robin, Geneviève: Imputation of mixed data with multilevel singular value decomposition (2019)
  6. Archimbaud, Aurore: Unsupervised outlier detection in quality control: an overview (2018)
  7. Josse, Julie; Wager, Stefan: Bootstrap-based regularization for low-rank matrix estimation (2016)
  8. Julie Josse, Sylvain Sardy, Stefan Wager: denoiseR: A Package for Low Rank Matrix Estimation (2016) arXiv

  • Article statistics & filter:

  • Search for articles
  • MSC classification / top
    • Top MSC classes
      • 62 Statistics
      • 68 Computer science
      • 92 Applications of...

  • Publication year
    • 2010 - today
    • 2005 - 2009
    • 2000 - 2004
    • before 2000
  • Terms & Conditions
  • Imprint
  • Privacy Policy