Denovo: A New Three-Dimensional Parallel Discrete Ordinates Code in SCALE. Denovo is a new, three-dimensional, discrete ordinates (SN) transport code that uses state-of-the-art solution methods to obtain accurate solutions to the Boltzmann transport equation. Denovo uses the Koch-Baker-Alcouffe parallel sweep algorithm to obtain high parallel efficiency on O(100) processors on XYZ orthogonal meshes. As opposed to traditional SN codes that use source iteration, Denovo uses nonstationary Krylov methods to solve the within-group equations. Krylov methods are far more efficient than stationary schemes. Additionally, classic acceleration schemes (diffusion synthetic acceleration) do not suffer stability problems when used as a preconditioner to a Krylov solver. Denovo’s generic programming framework allows multiple spatial discretization schemes and solution methodologies. Denovo currently provides diamond-difference, theta-weighted diamond-difference, linear-discontinuous finite element, trilinear-discontinuous finite element, and step characteristics spatial differencing schemes. Also, users have the option of running traditional source iteration instead of Krylov iteration. Multigroup upscatter problems can be solved using Gauss-Seidel iteration with transport, two-grid acceleration. A parallel first-collision source is also available. Denovo solutions to the Kobayashi benchmarks are in excellent agreement with published results. Parallel performance shows excellent weak scaling up to 20000 cores and good scaling up to 40000 cores.

References in zbMATH (referenced in 13 articles )

Showing results 1 to 13 of 13.
Sorted by year (citations)

  1. Falabino, Matteo; Sciannandrone, Daniele; Masiello, Emiliano; Vidal, Jean-François; Zmijarevic, Igor: Computation of the uncollided-flux moments with advanced MOC and QP methods (2022)
  2. Jolivet, P.; Badri, M. A.; Favennec, Y.: Deterministic radiative transfer equation solver on unstructured tetrahedral meshes: efficient assembly and preconditioning (2021)
  3. Adams, Michael P.; Adams, Marvin L.; Hawkins, W. Daryl; Smith, Timmie; Rauchwerger, Lawrence; Amato, Nancy M.; Bailey, Teresa S.; Falgout, Robert D.; Kunen, Adam; Brown, Peter: Provably optimal parallel transport sweeps on semi-structured grids (2020)
  4. Jeffers, R. S.; Kópházi, J.; Eaton, M. D.; Févotte, F.; Hülsemann, F.; Ragusa, J.: Goal-based error estimation for the multi-dimensional diamond difference and box discrete ordinate ((S_N)) methods (2020)
  5. Hanuš, Milan; Harbour, Logan H.; Ragusa, Jean C.; Adams, Michael P.; Adams, Marvin L.: Uncollided flux techniques for arbitrary finite element meshes (2019)
  6. Hackemack, Michael W.; Ragusa, Jean C.: Quadratic serendipity discontinuous finite element discretization for (S_N) transport on arbitrary polygonal grids (2018)
  7. Jeffers, R. S.; Kópházi, J.; Eaton, M. D.; Févotte, F.; Hülsemann, F.; Ragusa, J.: Goal-based error estimation, functional correction, h, p and hp adaptivity of the 1-D diamond difference discrete ordinate method (2017)
  8. Jeffers, R. S.; Kópházi, J.; Eaton, M. D.; Févotte, F.; Hülsemann, F.; Ragusa, J.: Goal-based h-adaptivity of the 1-D diamond difference discrete ordinate method (2017)
  9. Hamilton, Steven; Berrill, Mark; Clarno, Kevin; Pawlowski, Roger; Toth, Alex; Kelley, C. T.; Evans, Thomas; Philip, Bobby: An assessment of coupling algorithms for nuclear reactor core physics simulations (2016)
  10. Hamilton, Steven P.; Evans, Thomas M.; Davidson, Gregory G.; Johnson, Seth R.; Pandya, Tara M.; Godfrey, Andrew T.: Hot zero power reactor calculations using the Insilico code (2016)
  11. Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.: Implementation, capabilities, and benchmarking of shift, a massively parallel Monte Carlo radiation transport code (2016)
  12. Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; Hamilton, Steven P.; Sampath, Rahul S.; Clarno, Kevin T.; Dilts, Gary A.: A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins (2015)
  13. Slaybaugh, R. N.; Evans, T. M.; Davidson, G. G.; Wilson, P. P. H.: Multigrid in energy preconditioner for Krylov solvers (2013)