C-XSC. A programming environment for verified scientific computing and numerical data processing. C-XSC is a tool for the development of numerical algorithms delivering highly accurate and automatically verified results. It provides a large number of predefined numerical data types and operators. These types are implemented as C++ classes. Thus, C-XSC allows high-level programming of numerical applications in C and C++. The C-XSC package is available for all computers with a C++ compiler translating the AT&T language standard 2.0.

References in zbMATH (referenced in 103 articles , 1 standard article )

Showing results 61 to 80 of 103.
Sorted by year (citations)
  1. Sotiropoulos, D. G.; Grapsa, T. N.: Optimal centers in branch-and-prune algorithms for univariate global optimization (2005)
  2. Tóth, Boglárka; Csendes, Tibor: Empirical investigation of the convergence speed of inclusion functions in a global otimization context (2005)
  3. Žilinskas, Julius: Comparison of packages for interval arithmetic (2005)
  4. Fausten, Daniela; Haßlinger, Gerhard: Verified numerical analysis of the performance of switching systems in telecommunication (2004)
  5. Hofschuster, Werner; Krämer, Walter: C-XSC 2.0 -- a C++ library for extended scientific computing (2004)
  6. Hölbig, Carlos Amaral; Morandi Júnior, Paulo Sérgio; Krämer Alcalde, Bernardo Frederes; Diverio, Tiarajú Asmuz: Selfverifying solvers for linear systems of equations in C-XSC (2004)
  7. Kolberg, Mariana Lüderitz; Hölbig, Carlos Amaral; Bohlender, Gerd; Claudio, Dalcidio Moraes: New accurate expressions in C-XSC (2004)
  8. Krämer, Walter; Popova, Evgenija D.: On the computation of reliable outer and inner closures for parametric systems of linear equations (2004)
  9. Vinkó, Tamás; Lagouanelle, Jean-Louis; Csendes, Tibor: A new inclusion function for optimization: kite -- the one-dimensional case (2004)
  10. Wolff von Gudenberg, Jürgen: OOP and interval arithmetic -- language support and libraries (2004)
  11. Breuer, B.; McKenna, P. J.; Plum, M.: Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof. (2003)
  12. Casado, L. G.; García, I.; Csendes, T.; Ruíz, V. G.: Heuristic rejection in interval global optimization (2003)
  13. Neher, M.: Improved validated bounds for Taylor coefficients and for Taylor remainder series (2003)
  14. Nievergelt, Yves: Scalar fused multiply-add instructions produce floating-point matrix arithmetic provably accurate to the penultimate digit (2003)
  15. Plum, Michael; Wieners, Christian: New solutions of the Gelfand problem (2002)
  16. Csallner, Andras Erik; Klatte, Rudi; Ratz, Dietmar; Wiethoff, Andreas: Interval methods for global optimization using the boxing method (2001)
  17. Hyvönen, Eero: Interval input and output (2001)
  18. Neher, M.: Computable bounds for Taylor coefficients of analytic functions (2001)
  19. Plum, Michael: Computer-assisted enclosure methods for elliptic differential equations (2001)
  20. Rump, Siegfried M.: Rigorous and portable standard functions (2001)