Docker is the world’s leading software containerization platform. Docker containers wrap a piece of software in a complete filesystem that contains everything needed to run: code, runtime, system tools, system libraries – anything that can be installed on a server. This guarantees that the software will always run the same, regardless of its environment.

References in zbMATH (referenced in 21 articles )

Showing results 1 to 20 of 21.
Sorted by year (citations)

1 2 next

  1. Lukas Riedel; Benjamin Herdeanu; Harald Mack; Yunus Sevinchan; Julian Weninger: Utopia: A Comprehensive and Collaborative Modeling Framework for Complex and Evolving Systems (2020) not zbMATH
  2. Mokhov, Andrey; Mitchell, Neil; Peyton Jones, Simon: Build systems à la carte: theory and practice (2020)
  3. Paul F. Lang, Sungho Shin, Victor M. Zavala: SBML2Julia: interfacing SBML with efficient nonlinear Julia modelling and solution tools for parameter optimization (2020) arXiv
  4. Eric Horton, Chris Parnin: DockerizeMe: Automatic Inference of Environment Dependencies for Python Code Snippets (2019) arXiv
  5. Hagen Radtke; Florian Börgel; Sandra-Esther Brunnabend; Anja Eggert; Madline Kniebusch; H. E. Markus Meier; Daniel Neumann; Thomas Neumann; Manja Placke: Validator - a Web-Based Interactive Tool for Validation of Ocean Models at Oceanographic Stations (2019) not zbMATH
  6. Macauley, Matthew; Jenkins, Andy; Davies, Robin: The regulation of gene expression by operons and the local modeling framework (2019)
  7. Naji Dmeiri, David A. Tomassi, Yichen Wang, Antara Bhowmick, Yen-Chuan Liu, Premkumar Devanbu, Bogdan Vasilescu, Cindy Rubio-González: BugSwarm: Mining and Continuously Growing a Dataset of Reproducible Failures and Fixes (2019) arXiv
  8. Pierre Lacroix; Frédéric Moser; Antonio Benvenuti; Thomas Piller; David Jensen; Inga Petersen; Marion Planque; Nicolas Ray: MapX: An open geospatial platform to manage, analyze and visualize data on natural resources and the environment (2019) not zbMATH
  9. Viktor Kazakov, Franz J. Király: Machine Learning Automation Toolbox (MLaut) (2019) arXiv
  10. Ariella L.Gladstein; Consuelo D. Quinto-Cortés; Julian L. Pistorius; David Christy; Logan Gantner; Blake L. Joyce: SimPrily: A Python framework to simplify high-throughput genomic simulations (2018) not zbMATH
  11. Calden Wloka, Toni Kunić, Iuliia Kotseruba, Ramin Fahimi, Nicholas Frosst, Neil D. B. Bruce, John K. Tsotsos: SMILER: Saliency Model Implementation Library for Experimental Research (2018) arXiv
  12. Francisco Charte, Antonio J. Rivera, David Charte, María J. del Jesus, Francisco Herrera: Tips, guidelines and tools for managing multi-label datasets: the mldr.datasets R package and the Cometa data repository (2018) arXiv
  13. Michael J Bommarito II; Daniel Martin Katz; Eric M Detterman: OpenEDGAR: Open Source Software for SEC EDGAR Analysis (2018) arXiv
  14. Tople, Shruti; Park, Soyeon; Kang, Min Suk; Saxena, Prateek: \textscVeriCount: verifiable resource accounting using hardware and software isolation (2018)
  15. Coelho, L.P.: Jug: Software for Parallel Reproducible Computation in Python (2017) not zbMATH
  16. E. Schuyler Fried, Nicolas P. D. Sawaya, Yudong Cao, Ian D. Kivlichan, Jhonathan Romero, Alán Aspuru-Guzik: qTorch: The Quantum Tensor Contraction Handler (2017) arXiv
  17. Gabriel Becker, Cory Barr, Robert Gentleman, Michael Lawrence: Enhancing Reproducibility and Collaboration via Management of R Package Cohorts (2017) not zbMATH
  18. Gainer-Dewar, Andrew; Vera-Licona, Paola: The minimal hitting set generation problem: algorithms and computation (2017)
  19. Pierre Fernique, Christophe Pradal: AutoWIG: Automatic Generation of Python Bindings for C++ Libraries (2017) arXiv
  20. Toth, Csaba D. (ed.); Goodman, Jacob E. (ed.); O’Rourke, Joseph (ed.): Handbook of discrete and computational geometry (2017)

1 2 next