BoijSoederberg -- Betti diagram routines. BoijSoederberg is a package designed to help with the investigation of the Boij-Soederberg conjectures and theorems. For the definitions and conjectures, see math.AC/0611081, ”Graded Betti numbers of Cohen-Macaulay modules and the Multiplicity conjecture”, by Mats Boij, Jonas Soederberg.

References in zbMATH (referenced in 56 articles , 1 standard article )

Showing results 41 to 56 of 56.
Sorted by year (citations)
  1. Berkesch, Christine; Erman, Daniel; Kummini, Manoj; Sam, Steven V.: Shapes of free resolutions over a local ring (2012)
  2. Bertone, Cristina; Nguyen, Dang Hop; Vorwerk, Kathrin: The cones of Hilbert functions of squarefree modules (2012)
  3. Boij, Mats; Söderberg, Jonas: Betti numbers of graded modules and the multiplicity conjecture in the non-Cohen-Macaulay case (2012)
  4. Boij, Mats; Fløystad, Gunnar: The cone of Betti diagrams of bigraded artinian modules of codimension two (2011)
  5. Cook, David II: The structure of the Boij-Söderberg posets (2011)
  6. Eisenbud, David; Fløystad, Gunnar; Weyman, Jerzy: The existence of equivariant pure free resolutions (2011)
  7. Goff, Michael: Higher dimensional Moore bounds (2011)
  8. Nagel, Uwe: Level algebras through Buchsbaum* manifolds (2011)
  9. Sam, Steven V.; Weyman, Jerzy: Pieri resolutions for classical groups. (2011)
  10. Römer, Tim: Betti numbers and shifts in minimal graded free resolutions (2010)
  11. Eisenbud, David; Schreyer, Frank-Olaf: Betti numbers of graded modules and cohomology of vector bundles (2009)
  12. Herzog, Jürgen; Zheng, Xinxian: Bounds for Hilbert coefficients (2009)
  13. Peeva, Irena; Stillman, Mike: Open problems on syzygies and Hilbert functions (2009)
  14. Boij, Mats; Söderberg, Jonas: Graded Betti numbers of Cohen-Macaulay modules and the multiplicity conjecture (2008)
  15. Puthenpurakal, Tony J.: On the upper bound of the multiplicity conjecture (2008)
  16. Seo, Sumi: Almost complete intersections (2008)