ANICK
ANICK is a program for calculating Anick’s resolution and (through it) Gröbner basis and Yoneda product in the noncommutative graded algebras.
Keywords for this software
References in zbMATH (referenced in 10 articles )
Showing results 1 to 10 of 10.
Sorted by year (- AlHussein, H.; Kolesnikov, P. S.: The Anick complex and the Hochschild cohomology of the Manturov ((2,3))-group (2020)
- La Scala, Roberto; Piontkovski, Dmitri; Tiwari, Sharwan K.: Noncommutative algebras, context-free grammars and algebraic Hilbert series (2020)
- Laugwitz, Robert; Retakh, Vladimir: Algebras of quasi-Plücker coordinates are Koszul (2018)
- Lopatkin, Viktor: Cohomology rings of the plactic monoid algebra via a Gröbner-Shirshov basis (2016)
- Dotsenko, Vladimir; Khoroshkin, Anton: Quillen homology for operads via Gröbner bases (2013)
- La Scala, Roberto; Levandovskyy, Viktor: Letterplace ideals and non-commutative Gröbner bases. (2009)
- Leamer, Micah J.: Gröbner finite path algebras. (2006)
- Sköldberg, Emil: Morse theory from an algebraic viewpoint. (2006)
- Cojocaru, Svetlana; Podoplelov, Alexander; Ufnarovski, Victor: Non-commutative Gröbner bases and Anick’s resolution (1999)
- Podoplelov, A.: Constructing the Gröbner basis using Anick’s resolution in the noncommutative algebras (1996)