MINUIT

MINUIT is a physics analysis tool for function minimization. The functions (so-called objective functions, can be chisquare, likelihood or user defined) are provided by the user. MINUIT contains several tools for minimizing a function and for special error analysis. MINUIT was initially written in Fortran about 25 years ago at CERN by Fred James. Its main field of usage is statistical data analysis of experimental data recorded at CERN, but it is also used by people outside high energy physics (HEP). This project aims to re-implement MINUIT in an object-oriented way using C++.


References in zbMATH (referenced in 33 articles )

Showing results 1 to 20 of 33.
Sorted by year (citations)

1 2 next

  1. Baak, M.; Koopman, R.; Snoek, H.; Klous, S.: A new correlation coefficient between categorical, ordinal and interval variables with Pearson characteristics (2020)
  2. Chan Beom Park: YAM2: Yet another library for the M2 variables using sequential quadratic programming (2020) arXiv
  3. Marangotto, Daniele: Extracting maximum information from polarised baryon decays via amplitude analysis: the (\Lambda_c^+\longrightarrowp K^- \pi^+) case (2020)
  4. Sheibani, Javad; Mirjalili, Abolfazl; Tehrani, S. Atashbar: Parton and valon distributions in the nuclei (2020)
  5. Giordano, Matteo: Localisation in 2+1 dimensional SU(3) pure gauge theory at finite temperature (2019)
  6. Gao, Jun; Harland-Lang, Lucian; Rojo, Juan: The structure of the proton in the LHC precision era (2018)
  7. Meloni, Davide; Ohlsson, Tommy; Riad, Stella: Renormalization group running of fermion observables in an extended non-supersymmetric SO(10) model (2017)
  8. Morningstar, Colin; Bulava, John; Singha, Bijit; Brett, Ruairí; Fallica, Jacob; Hanlon, Andrew; Hörz, Ben: Estimating the two-particle (K)-matrix for multiple partial waves and decay channels from finite-volume energies (2017)
  9. Cho, Won Sang; Gainer, James S.; Kim, Doojin; Lim, Sung Hak; Matchev, Konstantin T.; Moortgat, Filip; Pape, Luc; Park, Myeonghun: OPTIMASS: a package for the minimization of kinematic mass functions with constraints (2016)
  10. Staub, Florian: Exploring new models in all detail with \textttSARAH (2015)
  11. Moch, S.; Vermaseren, J. A. M.; Vogt, A.: The three-loop splitting functions in QCD: the helicity-dependent case (2014)
  12. Salgado, Carlos W.; Weygand, Dennis P.: On the partial-wave analysis of mesonic resonances decaying to multiparticle final states produced by polarized photons (2014)
  13. Towers, S.; Feng, Z.: Social contact patterns and control strategies for influenza in the elderly (2012)
  14. Feroz, Farhan; Cranmer, Kyle; Hobson, Mike; De Austri, Roberto Ruiz; Trotta, Roberto: Challenges of profile likelihood evaluation in multi-dimensional SUSY scans (2011)
  15. Kumerički, Krešimir; Müller, Dieter; Schäfer, Andreas: Neural network generated parametrizations of deeply virtual Compton form factors (2011)
  16. Mandal, Sourav K.; Nojiri, Mihoko; Sudano, Matthew; Yanagida, Tsutomu T.: Testing the Nambu-Goldstone hypothesis for quarks and leptons at the LHC (2011)
  17. Blümlein, Johannes; Böttcher, Helmut: QCD analysis of polarized deep inelastic scattering data (2010)
  18. Del Aguila, F.; De Blas, J.; Pérez-Victoria, M.: Electroweak limits on general new vector bosons (2010)
  19. Forshaw, J. R.; Sandapen, R.: Extracting the (\rho) meson wavefunction from HERA data (2010)
  20. Lundberg, J.; Conrad, J.; Rolke, W.; Lopez, A.: Limits, discovery and cut optimization for a Poisson process with uncertainty in background and signal efficiency: TRolke 2.0 (2010)

1 2 next