petsc4py
PETSc for Python: This document describes petsc4py, a Python port to the PETSc libraries. PETSc (the Portable, Extensible Toolkit for Scientific Computation) is a suite of data structures and routines for the scalable (parallel) solution of scientific applications modeled by partial differential equations. It employs the MPI standard for all message-passing communication. This package provides an important subset of PETSc functionalities and uses NumPy to efficiently manage input and output of array data.
Keywords for this software
References in zbMATH (referenced in 43 articles )
Showing results 1 to 20 of 43.
Sorted by year (- Grekas, Georgios; Koumatos, Konstantinos; Makridakis, Charalambos; Rosakis, Phoebus: Approximations of energy minimization in cell-induced phase transitions of fibrous biomaterials: (\Gamma)-convergence analysis (2022)
- Joshaghani, M. S.; Riviere, B.; Sekachev, M.: Maximum-principle-satisfying discontinuous Galerkin methods for incompressible two-phase immiscible flow (2022)
- Zhang, Hong; Constantinescu, Emil M.; Smith, Barry F.: \textttPETScTSAdjoint: a discrete adjoint ODE solver for first-order and second-order sensitivity analysis (2022)
- Allen, Jeffery M.; Chang, Justin; Usseglio-Viretta, Francois L. E.; Graf, Peter; Smith, Kandler: A segregated approach for modeling the electrochemistry in the 3-D microstructure of li-ion batteries and its acceleration using block preconditioners (2021)
- Bastian, Peter; Blatt, Markus; Dedner, Andreas; Dreier, Nils-Arne; Engwer, Christian; Fritze, René; Gräser, Carsten; Grüninger, Christoph; Kempf, Dominic; Klöfkorn, Robert; Ohlberger, Mario; Sander, Oliver: The \textscDuneframework: basic concepts and recent developments (2021)
- Elliott, C. M.; Hatcher, L.: Domain formation via phase separation for spherical biomembranes with small deformations (2021)
- Gbikpi-Benissan, Guillaume; Magoulès, Frédéric: Asynchronous substructuring method with alternating local and global iterations (2021)
- Graham, I. G.; Pembery, O. R.; Spence, E. A.: Analysis of a Helmholtz preconditioning problem motivated by uncertainty quantification (2021)
- Kamensky, David: Open-source immersogeometric analysis of fluid-structure interaction using FEniCS and tIGAr (2021)
- Kirby, Robert C.; Klöckner, Andreas; Sepanski, Ben: Finite elements for Helmholtz equations with a nonlocal boundary condition (2021)
- Marazzato, Frédéric: A variational discrete element method for the computation of Cosserat elasticity (2021)
- Zhang, Junqi; Ankit, Ankit; Gravenkamp, Hauke; Eisenträger, Sascha; Song, Chongmin: A massively parallel explicit solver for elasto-dynamic problems exploiting octree meshes (2021)
- Zimmerman, Alexander G.; Kowalski, Julia: Mixed finite elements for convection-coupled phase-change in enthalpy form: open software verified and applied to 2D benchmarks (2021)
- Chen, Tyler; Carson, Erin: Predict-and-recompute conjugate gradient variants (2020)
- Nennig, Benoit; Perrey-Debain, Emmanuel: A high order continuation method to locate exceptional points and to compute Puiseux series with applications to acoustic waveguides (2020)
- Niewiarowski, Alexander; Adriaenssens, Sigrid; Pauletti, Ruy Marcelo: Adjoint optimization of pressurized membrane structures using automatic differentiation tools (2020)
- Cimrman, Robert; Lukeš, Vladimír; Rohan, Eduard: Multiscale finite element calculations in Python using sfepy (2019)
- Cotter, Colin; Crisan, Dan; Holm, Darryl D.; Pan, Wei; Shevchenko, Igor: Numerically modeling stochastic Lie transport in fluid dynamics (2019)
- Gjerde, Ingeborg G.; Kumar, Kundan; Nordbotten, Jan M.; Wohlmuth, Barbara: Splitting method for elliptic equations with line sources (2019)
- Joshaghani, M. S.; Chang, J.; Nakshatrala, K. B.; Knepley, M. G.: Composable block solvers for the four-field double porosity/permeability model (2019)