Menu
  • About & Contact
  • Feedback
  • Contribute
  • Help
  • zbMATH

swMATH

swmath-logo
  • Search
  • Advanced search
  • Browse
  • browse software by name
  • browse software by keywords
  • browse software by MSC
  • browse software by types

cleverhans

CleverHans v1.0.0: an adversarial machine learning library.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element

  • arXiv_publication
  • Machine Learning
  • arXiv_cs.LG
  • Adversarial Attacks
  • arXiv_cs.CR
  • arXiv_stat.ML
  • Python
  • Security
  • arXiv_cs.CV
  • PyTorch
  • TrojanZoo
  • domain adaptation
  • Pattern Recognition
  • Cryptography
  • anomaly detection
  • deep learning
  • Computer Vision
  • Explainability
  • arXiv_cs.GT
  • Game Theory
  • adversarial attacks
  • neural backdoors
  • adversarial robustness
  • security researches
  • adversarial defense
  • ReLU networks
  • generative adversarial networks
  • robustness
  • white-box attacks
  • gradient-free attacks

  • URL: github.com/tensorflow/...
  • Code
  • InternetArchive
  • Authors: N. Papernot, I. Goodfellow, R. Sheatsley, R. Feinman, P. McDaniel

  • Add information on this software.


  • Related software:
  • DeepFool
  • PyTorch
  • Foolbox
  • Reluplex
  • Grad-CAM
  • TensorFlow
  • MagNet
  • Python
  • LFW
  • Keras
  • Show more...
  • Theano
  • GitHub
  • CycleGAN
  • pix2pix
  • U-Net
  • GANomaly
  • CIFAR
  • Lasagne
  • shap
  • DeepRED
  • Show less...

References in zbMATH (referenced in 7 articles )

Showing results 1 to 7 of 7.
y Sorted by year (citations)

  1. Anirudh, Rushil; Thiagarajan, Jayaraman J.; Kailkhura, Bhavya; Bremer, Peer-Timo: MimicGAN: robust projection onto image manifolds with corruption mimicking (2020)
  2. Croce, Francesco; Rauber, Jonas; Hein, Matthias: Scaling up the randomized gradient-free adversarial attack reveals overestimation of robustness using established attacks (2020)
  3. Huang, Xiaowei; Kroening, Daniel; Ruan, Wenjie; Sharp, James; Sun, Youcheng; Thamo, Emese; Wu, Min; Yi, Xinping: A survey of safety and trustworthiness of deep neural networks: verification, testing, adversarial attack and defence, and interpretability (2020)
  4. Ren Pang, Zheng Zhang, Xiangshan Gao, Zhaohan Xi, Shouling Ji, Peng Cheng, Ting Wang: TROJANZOO: Everything you ever wanted to know about neural backdoors (but were afraid to ask) (2020) arXiv
  5. Yaxin Li, Wei Jin, Han Xu, Jiliang Tang: DeepRobust: A PyTorch Library for Adversarial Attacks and Defenses (2020) arXiv
  6. Marco Melis, Ambra Demontis, Maura Pintor, Angelo Sotgiu, Battista Biggio: secml: A Python Library for Secure and Explainable Machine Learning (2019) arXiv
  7. Jonas Rauber, Wieland Brendel, Matthias Bethge: Foolbox v0.8.0: A Python toolbox to benchmark the robustness of machine learning models (2017) arXiv

  • Article statistics & filter:

  • Search for articles
  • MSC classification / top
    • Top MSC classes
      • 68 Computer science

  • Publication year
    • 2010 - today
    • 2005 - 2009
    • 2000 - 2004
    • before 2000
  • Terms & Conditions
  • Imprint
  • Privacy Policy