MXNet

MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix symbolic and imperative programming to maximize efficiency and productivity. At its core, MXNet contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly. A graph optimization layer on top of that makes symbolic execution fast and memory efficient. MXNet is portable and lightweight, scaling effectively to multiple GPUs and multiple machines. MXNet is also more than a deep learning project. It is also a collection of blue prints and guidelines for building deep learning systems, and interesting insights of DL systems for hackers


References in zbMATH (referenced in 30 articles )

Showing results 1 to 20 of 30.
Sorted by year (citations)

1 2 next

  1. Haghighat, Ehsan; Juanes, Ruben: SciANN: a keras/tensorflow wrapper for scientific computations and physics-informed deep learning using artificial neural networks (2021)
  2. Haghighat, Ehsan; Raissi, Maziar; Moure, Adrian; Gomez, Hector; Juanes, Ruben: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics (2021)
  3. Jun Wang, Yinglu Liu, Yibo Hu, Hailin Shi, Tao Mei: FaceX-Zoo: A PyTorch Toolbox for Face Recognition (2021) arXiv
  4. Alexandrov, Alexander; Benidis, Konstantinos; Bohlke-Schneider, Michael; Flunkert, Valentin; Gasthaus, Jan; Januschowski, Tim; Maddix, Danielle C.; Rangapuram, Syama; Salinas, David; Schulz, Jasper; Stella, Lorenzo; Türkmen, Ali Caner; Wang, Yuyang: GluonTS: probabilistic and neural time series modeling in Python (2020)
  5. Chaoyang He, Songze Li, Jinhyun So, Mi Zhang, Hongyi Wang, Xiaoyang Wang, Praneeth Vepakomma, Abhishek Singh, Hang Qiu, Li Shen, Peilin Zhao, Yan Kang, Yang Liu, Ramesh Raskar, Qiang Yang, Murali Annavaram, Salman Avestimehr: FedML: A Research Library and Benchmark for Federated Machine Learning (2020) arXiv
  6. Guo, Jian; He, He; He, Tong; Lausen, Leonard; Li, Mu; Lin, Haibin; Shi, Xingjian; Wang, Chenguang; Xie, Junyuan; Zha, Sheng; Zhang, Aston; Zhang, Hang; Zhang, Zhi; Zhang, Zhongyue; Zheng, Shuai; Zhu, Yi: GluonCV and GluonNLP: deep learning in computer vision and natural language processing (2020)
  7. Karumuri, Sharmila; Tripathy, Rohit; Bilionis, Ilias; Panchal, Jitesh: Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep neural networks (2020)
  8. Kazemi, Seyed Mehran; Goel, Rishab; Jain, Kshitij; Kobyzev, Ivan; Sethi, Akshay; Forsyth, Peter; Poupart, Pascal: Representation learning for dynamic graphs: a survey (2020)
  9. Kossaifi, Jean; Lipton, Zachary C.; Kolbeinsson, Arinbjorn; Khanna, Aran; Furlanello, Tommaso; Anandkumar, Anima: Tensor regression networks (2020)
  10. Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee, Gary Bradski: Kornia: an Open Source Differentiable Computer Vision Library for PyTorch (2019) arXiv
  11. Janzamin, Majid; Ge, Rong; Kossaifi, Jean; Anandkumar, Anima: Spectral learning on matrices and tensors (2019)
  12. Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, Dahua Lin: MMDetection: Open MMLab Detection Toolbox and Benchmark (2019) arXiv
  13. Neta Zmora, Guy Jacob, Lev Zlotnik, Bar Elharar, Gal Novik: Neural Network Distiller: A Python Package For DNN Compression Research (2019) arXiv
  14. van den Berg, E.: The Ocean Tensor Package (2019) not zbMATH
  15. Viktor Kazakov, Franz J. Király: Machine Learning Automation Toolbox (MLaut) (2019) arXiv
  16. Xiaomeng Dong, Junpyo Hong, Hsi-Ming Chang, Michael Potter, Aritra Chowdhury, Purujit Bahl, Vivek Soni, Yun-Chan Tsai, Rajesh Tamada, Gaurav Kumar, Caroline Favart, V. Ratna Saripalli, Gopal Avinash: FastEstimator: A Deep Learning Library for Fast Prototyping and Productization (2019) arXiv
  17. Zhao-Yun Chen, Cheng Xue, Si-Ming Chen, Guo-Ping Guo: VQNet: Library for a Quantum-Classical Hybrid Neural Network (2019) arXiv
  18. Albert Zeyer, Tamer Alkhouli, Hermann Ney: RETURNN as a Generic Flexible Neural Toolkit with Application to Translation and Speech Recognition (2018) arXiv
  19. Andrew Beers; James Brown; Ken Chang; Katharina Hoebel; Elizabeth Gerstner; Bruce Rosen; Jayashree Kalpathy-Cramer: DeepNeuro: an open-source deep learning toolbox for neuroimaging (2018) arXiv
  20. Dan Moldovan, James M Decker, Fei Wang, Andrew A Johnson, Brian K Lee, Zachary Nado, D Sculley, Tiark Rompf, Alexander B Wiltschko: AutoGraph: Imperative-style Coding with Graph-based Performance (2018) arXiv

1 2 next