ROLMIP - Robust LMI Parser. ROLMIP (Robust LMI Parser) is a set of programs that works along with the YALMIP toolbox, and it is designed to work specifically with optimization problems presenting parameter-dependent variables with parameters in the unit simplex. The variables are assumed to depend polynomially on the parameters, being the polynomials considered to be homogeneous. Such optimization problems arise, for example, on the analysis and synthesis conditions related to uncertain continuous or discrete systems, with constraints that are usually defined as Linear Matrix Inequalities (LMIs). The main objective of ROLMIP is to provide an easy interface for the user, starting from the definition of the variables and going through a straighforward way in defining the LMIs. In addition, once all the variables and LMIs are set they can be converted into a Matlab executable file which solves the same problem but consuming much less time.

References in zbMATH (referenced in 16 articles )

Showing results 1 to 16 of 16.
Sorted by year (citations)

  1. Keles, Natália A.; Agulhari, Cristiano M.; Lacerda, Márcio J.: Stability analysis and robust performance of periodic discrete-time uncertain systems via structured Lyapunov functions (2021)
  2. Silva, Rafael N.; Frezzatto, Luciano: A new parametrization for static output feedback control of LPV discrete-time systems (2021)
  3. Hooshmandi, Kaveh; Bayat, Farhad; Jahedmotlagh, Mohamadreza; Jalali, Aliakbar: Guaranteed cost nonlinear sampled-data control: applications to a class of chaotic systems (2020)
  4. Hooshmandi, Kaveh; Bayat, Farhad; Jahed-Motlagh, Mohammad Reza; Jalali, Ali Akbar: Polynomial LPV approach to robust (H_\infty) control of nonlinear sampled-data systems (2020)
  5. Neves, Gabriel P.; Angélico, Bruno A.; Agulhari, Cristiano M.: Robust (\mathcalH_2) controller with parametric uncertainties applied to a reaction wheel unicycle (2020)
  6. Peixoto, Márcia L. C.; Pessim, Paulo S. P.; Lacerda, Márcio J.; Palhares, Reinaldo M.: Stability and stabilization for LPV systems based on Lyapunov functions with non-monotonic terms (2020)
  7. Agulhari, Cristiano M.; Felipe, Alexandre; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.: Algorithm 998: The robust LMI parser -- a toolbox to construct LMI conditions for uncertain systems (2019)
  8. Agulhari, Cristiano M.; Lacerda, Márcio J.: Observer-based state-feedback control design for LPV periodic discrete-time systems (2019)
  9. Frezzatto, Luciano; Lacerda, Márcio J.; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.: (\mathcalH_2) and (\mathcalH_\infty) fuzzy filters with memory for Takagi-Sugeno discrete-time systems (2019)
  10. Keles, Natália A.; Lacerda, Márcio J.; Agulhari, Cristiano M.: Robust performance and observer based control for periodic discrete-time uncertain systems (2019)
  11. Morais, Cecília F.; Braga, Márcio F.; Tognetti, Eduardo S.; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.: Digital redesign of analogue dynamic output-feedback controllers for polytopic systems (2019)
  12. Pessim, Paulo S. P.; Leite, Valter J. S.; Lacerda, Márcio J.: Robust performance for uncertain systems via Lyapunov functions with higher order terms (2019)
  13. Al-Jiboory, Ali Khudhair; Zhu, Guoming: Static output-feedback robust gain-scheduling control with guaranteed (\mathcalH_2) performance (2018)
  14. Morais, Cecília F.; Palma, Jonathan M.; Peres, Pedro L. D.; Oliveira, Ricardo C. L. F.: An LMI approach for (\mathcalH_2) and (\mathcalH_\infty) reduced-order filtering of uncertain discrete-time Markov and Bernoulli jump linear systems (2018)
  15. Frezzatto, Luciano; de Oliveira, Maurício; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.: Robust non-minimal order filter and smoother design for discrete-time uncertain systems (2017)
  16. Frezzatto, Luciano; de Oliveira, Maurício C.; Oliveira, Ricardo C. L. F.; Peres, Pedro L. D.: Robust (H_\infty) filter design with past output measurements for uncertain discrete-time systems (2016)