ddfermi

ddfermi -- a drift-diffusion simulation tool. ddfermi is an open-source software prototype which simulates drift diffusion processes in classical and organic semiconductors. Key features: finite volume discretization of the semiconductor equations (van Roosbroeck system); thermodynamically consistent Scharfetter-Gummel flux discretizations; general statistics: Fermi-Dirac, Gauss-Fermi, Blakemore and Boltzmann; multidimensional devices; based on pdelib and interfaced via Python or Lua.


References in zbMATH (referenced in 12 articles )

Showing results 1 to 12 of 12.
Sorted by year (citations)

  1. Kovtunenko, V. A.; Zubkova, A. V.: Homogenization of the generalized Poisson-Nernst-Planck problem in a two-phase medium: correctors and estimates (2021)
  2. Cancès, Clément; Hillairet, Claire Chainais; Fuhrmann, Jürgen; Gaudeul, Benoît: On four numerical schemes for a unipolar degenerate drift-diffusion model (2020)
  3. Fuhrmann, Jürgen; Doan, Duy Hai; Glitzky, Annegret; Liero, Matthias; Nika, Grigor: Unipolar drift-diffusion simulation of S-shaped current-voltage relations for organic semiconductor devices (2020)
  4. Kantner, Markus: Generalized Scharfetter-Gummel schemes for electro-thermal transport in degenerate semiconductors using the Kelvin formula for the Seebeck coefficient (2020)
  5. Fuhrmann, Jürgen; Guhlke, Clemens; Linke, Alexander; Merdon, Christian; Müller, Rüdiger: Voronoi finite volumes and pressure robust finite elements for electrolyte models with finite ion sizes (2019)
  6. Fuhrmann, Jürgen; Guhlke, Clemens; Linke, Alexander; Merdon, Christian; Müller, Rüdiger: Models and numerical methods for electrolyte flows (2019)
  7. Dreyer, W.; Guhlke, C.; Landstorfer, M.; Müller, R.: New insights on the interfacial tension of electrochemical interfaces and the Lippmann equation (2018)
  8. González Granada, José Rodrigo; Kovtunenko, Victor A.: Entropy method for generalized Poisson-Nernst-Planck equations (2018)
  9. Kovtunenko, Victor A.; Zubkova, Anna V.: Mathematical modeling of a discontinuous solution of the generalized Poisson-Nernst-Planck problem in a two-phase medium (2018)
  10. Farrell, Patricio; Koprucki, Thomas; Fuhrmann, Jürgen: Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics (2017)
  11. Kovtunenko, Victor A.; Zubkova, Anna V.: On generalized Poisson-Nernst-Planck equations with inhomogeneous boundary conditions: a-priori estimates and stability (2017)
  12. Fuhrmann, Jürgen: Comparison and numerical treatment of generalised Nernst-Planck models (2015)