LibD3C
LibD3C: ensemble classifiers with a clustering and dynamic selection strategy. Selective ensemble is a learning paradigm that follows an “overproduce and choose” strategy, where a number of candidate classifiers are trained, and a set of several classifiers that are accurate and diverse are selected to solve a problem. In this paper, the hybrid approach called D3C is presented; this approach is a hybrid model of ensemble pruning that is based on k-means clustering and the framework of dynamic selection and circulating in combination with a sequential search method. Additionally, a multi-label D3C is derived from D3C through employing a problem transformation for multi-label classification. Empirical study shows that D3C exhibits competitive performance against other high-performance methods, and experiments in multi-label datasets verify the feasibility of multi-label D3C.
Keywords for this software
References in zbMATH (referenced in 4 articles )
Showing results 1 to 4 of 4.
Sorted by year (- Qing, Yang; Cangzhi, Jia; Taoying, Li: Prediction of aptamer-protein interacting pairs based on sparse autoencoder feature extraction and an ensemble classifier (2019)
- Tian, Baoguang; Wu, Xue; Chen, Cheng; Qiu, Wenying; Ma, Qin; Yu, Bin: Predicting protein-protein interactions by fusing various Chou’s pseudo components and using wavelet denoising approach (2019)
- Zhang, Yuanjian; Miao, Duoqian; Zhang, Zhifei; Xu, Jianfeng; Luo, Sheng: A three-way selective ensemble model for multi-label classification (2018)
- Xin Liu, Meina Kan, Wanglong Wu, Shiguang Shan, Xilin Chen: VIPLFaceNet: An Open Source Deep Face Recognition SDK (2016) arXiv